Skip to main content
Log in

DNA binding and nuclease activity of a water-soluble sulfonated manganese(III) corrole

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The interaction of a water-soluble sulfonated Mn(III) corrole Mn(tpfc)(SO3Na)2 [tpfc = 5,10,15-tris(pentafluorophenyl)corrole] with calf thymus DNA (ct-DNA) has been studied by spectroscopic methods, and the nuclease activity of this complex has also been examined by agarose gel electrophoresis. Mn(tpfc)(SO3Na)2 exhibits weak aggregation tendency in buffer solution and can bind to ct-DNA via an outside binding mode with a binding constant of 1.25 × 104 M−1. The observed increase in Stern–Volmer quenching constant with increasing temperature indicates that the competition of the manganese corrole and ethidium bromide with ct-DNA is a dynamic process. Moreover, the manganese corrole displays good chemical nuclease activity in the presence of hydrogen peroxide via oxidative cleavage of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang B, Tan J, Zhu L (2010) Colloids Surf B 79(1):1–4

    Article  CAS  Google Scholar 

  2. Baraldi PG, Bovero A, Fruttarolo F, Preti D, Tabrizi MA, Pavani MG, Romagnoli R (2004) Med Res Rev 24(4):475–528

    Article  CAS  Google Scholar 

  3. Patel M, Gandhi D, Parmar P (2011) J Coord Chem 64(7):1276–1288

    Article  CAS  Google Scholar 

  4. Wang XL, Chao H, Li H, Hong XL, Ji LN, Li XY (2004) J Inorg Biochem 98(3):423–429

    Article  CAS  Google Scholar 

  5. Haeubl M, Reith LM, Gruber B, Karner U, Mueller N, Knoer G, Schoefberger W (2009) J Biol Inorg Chem 14(7):1037–1052

    Article  CAS  Google Scholar 

  6. Chalbot MC, Gryllos L, Kefokeris K, Manoussakis N, Verchere-Beaur C, Perree-Fauvet M, Coutsolelos AG (2011) J Porphyrins Phthalocyanines 15(7–8):704–717

    Article  CAS  Google Scholar 

  7. Liu J, Shi S, Ji LN, Mei WJ (2005) Transition Met Chem 30(6):684–690

    Article  CAS  Google Scholar 

  8. Zhao P, Huang JW, Mei WJ, He J, Ji LN (2010) Spectrochim Acta A 75(3):1108–1114

    Article  Google Scholar 

  9. Chabrier-Roselló Y, Giesselman BR, De Jesús-Andino FJ, Foster TH, Mitra S, Haidaris CG (2010) J Photochem Photobiol B 99(3):117–125

    Article  Google Scholar 

  10. Soucy-Faulkner A, Rousseau JA, Langlois R, Berard V, Lecomte R, Benard F, van Lier JE (2008) J Porphyr Phthalocyanines 12(1):49–53

    Article  CAS  Google Scholar 

  11. Haeubl M, Reith LM, Gruber B, Karner U, Muller N, Knor G, Schoefberger W (2009) J Bio Inorg Chem 14(7):1037–1052

    Article  CAS  Google Scholar 

  12. Haber A, Aviram M, Gross Z (2011) Inorg Chem 51(1):28–30

    Article  Google Scholar 

  13. Hwang JY, Lubow J, Chu D, Ma J, Agadjanian H, Sims J, Gray HB, Gross Z, Farkas DL, Medina-Kauwe LK (2011) Mol Pharm 8(6):2233–2243

    Article  CAS  Google Scholar 

  14. Lu J, Liu HY, Shi L, Wang XL, Ying X, Zhang L, Ji LN, Zang LQ, Chang CK (2011) Chin Chem Lett 22(1):101–104

    Article  CAS  Google Scholar 

  15. Fu B, Zhang D, Weng X, Zhang M, Ma H, Ma Y, Zhou X (2008) Chem Eur J 14(30):9431–9441

    Article  CAS  Google Scholar 

  16. Ma H, Zhang M, Zhang D, Huang R, Zhao Y, Yang H, Liu Y, Weng X, Zhou Y, Deng M, Xu L, Zhou X (2010) Chem Asian J 5(1):114–122

    Article  CAS  Google Scholar 

  17. Shuai L, Wang S, Zhang L, Fu B, Zhou X (2009) Chem Biodivers 6(6):827–837

    Article  CAS  Google Scholar 

  18. Tian T, Weng L, Wang S, Weng X, Zhang L, Zhou X (2009) J Porphyr Phthalocyanines 13(8):893–902

    Article  CAS  Google Scholar 

  19. Mahammed A, Goldberg I, Gross Z (2001) Org Lett 3(22):3443–3446

    Article  CAS  Google Scholar 

  20. Saltsman I, Mahammed A, Goldberg I, Tkachenko E, Botoshansky M, Gross Z (2002) J Am Chem Soc 124(25):7411–7420

    Article  CAS  Google Scholar 

  21. Mahammed A, Gray HB, Weaver JJ, Sorasaenee K, Gross Z (2004) Bioconjug Chem 15(4):738–746

    Article  CAS  Google Scholar 

  22. Haber A, Agadjanian H, Medina-Kauwe LK, Gross Z (2008) J Inorg Biochem 102(3):446–457

    Article  CAS  Google Scholar 

  23. Agadjanian H, Ma J, Rentsendorj A, Valluripalli V, Hwang JY, Mahammed A, Farkas DL, Gray HB, Gross Z, Medina-Kauwe LK (2009) Proc Natl Acad Sci USA 106(15):6105–6110

    Article  CAS  Google Scholar 

  24. Hwang JY, Gross Z, Gray HB, Medina-Kauwe LK, Farkas DL (2011) J Biomed Opt 16:0660071–0660076

    Article  Google Scholar 

  25. Mahammed A, Gross Z (2005) J Am Chem Soc 127(9):2883–2887

    Article  CAS  Google Scholar 

  26. Marmur J (1961) J Mol Biol 3(2):208–218

    Article  CAS  Google Scholar 

  27. Sun Y, Hou YJ, Zhou QX, Lei WH, Chen JR, Wang XS, Zhang BW (2010) Inorg Chem 49(21):10108–10116

    Article  CAS  Google Scholar 

  28. Gross Z, Galili N, Saltsman I (1999) Angew Chem Int Ed 38(10):1427–1429

    Article  CAS  Google Scholar 

  29. Kang J, Wu H, Lu X, Wang Y, Zhou L (2005) Spectrochim Acta A 61(9):2041–2047

    Article  Google Scholar 

  30. Cohen G, Eisenberg H (1969) Biopolymers 8(1):45–55

    Article  CAS  Google Scholar 

  31. Liu HY, Guo PY, Xu ZG, Ying X, Jiang HF, Chang CK (2007) Chinese J Inorg Chem 23(3):504–508

    CAS  Google Scholar 

  32. Pasternack RF, Gibbs EJ, Villafranca JJ (1983) Biochemistry 22(10):2406–2414

    Article  CAS  Google Scholar 

  33. Waring MJ (1965) J Mol Biol 13(1):269–282

    Article  CAS  Google Scholar 

  34. Lincoln P, Tuite E, Nordén B (1997) J Am Chem Soc 119(6):1454–1455

    Article  CAS  Google Scholar 

  35. Ivanov VI, Minchenkova L, Schyolkina A, Poletayev A (1973) Biopolymers 12(1):89–110

    Article  CAS  Google Scholar 

  36. Nordén B, Tjerneld F (1982) Biopolymers 21(9):1713–1734

    Article  Google Scholar 

  37. Liu JG, Zhang QL, Shi XF, Ji LN (2001) Inorg Chem 40(19):5045–5050

    Article  CAS  Google Scholar 

  38. Zhai Q, Xu L, Ge Y, Tian T, Wu W, Yan S, Zhou Y, Deng M, Liu Y, Zhou X (2011) Chem Eur J 17(32):8890–8895

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (20971046, 21171057), Natural Science Foundation of Guangdong Province (10351064101000000). We are thankful to Prof. Zeev Gross (Technion, Israel) for his valuable suggestions about synthesis of sulfonated corrole.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, JT., Wang, XL., Zhang, Y. et al. DNA binding and nuclease activity of a water-soluble sulfonated manganese(III) corrole. Transition Met Chem 38, 283–289 (2013). https://doi.org/10.1007/s11243-013-9689-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-013-9689-5

Keywords

Navigation