Skip to main content
Log in

CO2 fixation by macrocyclic nickel(II) complexes: synthesis and structures of helical chains constructed via hydrogen bonds involving imidazole

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two dinuclear carbonato-bridged nickel(II) complexes formulated as [Ni(rac-L)]2(µ-CO3)(H2O)(im)4(ClO4)2 (1) and [Ni(SS-L)]2(µ-CO3)(H2O)(im)4(ClO4)2 (2) (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, im = imidazole) were isolated from the reactions of [Ni(rac-L)](ClO4)2 and [Ni(SS-L)](ClO4)2 with imidazole in the air, respectively, and a hydrocarbonato-coordinated nickel(II) complex formulated as [Ni(rac-L)](HCO3)(ClO4) (3) was reacted with obtained when [Ni(rac-L)](ClO4)2 reacted with l-cysteine under weakly basic conditions in the air. We found that the macrocyclic nickel(II) complexes can easily take up and fix atmospheric CO2 at room temperature. Single-crystal X-ray diffraction analyses revealed of all three complexes that the central Ni(II) atoms all have a six-coordinated distorted octahedral coordination geometry, and the carbonate anion bridges two Ni(II) atoms in a tridentate fashion to form dimers in complexes 1 and 2, and the hydrocarbonate coordinates with Ni(II) in a didentate fashion in complex 3. The monomers of {[Ni(RR-L)]2(µ-CO3)(H2O)}2+/{[Ni(SS-L)]2(µ-CO3)(H2O)}2+ are connected through hydrogen bonds to generate one-dimensional right- and left-handed helical chains in complex 1. The chiral nature of complex 2 has been confirmed by CD spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Caldeira K, Jain AK, Hoffert MI (2003) Science 299:2052

    Article  CAS  Google Scholar 

  2. Eisenberg R, Nocera DG (2005) Inorg Chem 44:6799

    Article  CAS  Google Scholar 

  3. Yin XL, Moss JR (1999) Coord Chem Rev 181:27

    Article  CAS  Google Scholar 

  4. Mao ZW, Liehr G, Eldik R (2000) J Am Chem Soc 122:4839

    Article  CAS  Google Scholar 

  5. Kim JC, Cho JH, Kim H, Lough AJ (2004) Chem Commun 16:1796

    Article  Google Scholar 

  6. Kong LY, Zhu HF, Huang YQ, Kawaguchi H, Lu XH, Song Y, Liu GX, Sun WY, Ueyama N (2006) Inorg Chem 45:8098

    Article  CAS  Google Scholar 

  7. Verdejo B, Aguilar J, Espana EG, Gavina P, Latorre J, Soriano C, Llinares JM, Domenech A (2006) Inorg Chem 45:3803

    Article  CAS  Google Scholar 

  8. Escuer A, Mautner FA, Penalba E, Vicente R (1998) Inorg Chem 37:4190

    Article  CAS  Google Scholar 

  9. Kitajima N, Hikichi S, Tanaka M, Moro-oka Y (1993) J Am Chem Soc 115:5496

    Article  CAS  Google Scholar 

  10. Kato M, Ito T (1985) Inorg Chem 24:504

    Article  CAS  Google Scholar 

  11. Kersting B (2001) Angew Chem Int Ed 113:4109

    Article  Google Scholar 

  12. Chen JM, Wei W, Feng XL, Lu TB (2007) Chem Asian J 2:710

    Article  Google Scholar 

  13. Khatua S, Stoeckli-Evans H, Harada T, Kuroda R, Bhattacharjee M (2006) Inorg Chem 45:9619

    Article  CAS  Google Scholar 

  14. Lonnon DG, Colbran SB, Craig DC (2006) Eur J Inorg Chem 2006:1190

    Article  Google Scholar 

  15. Telfer SG, Kuroda R (2005) Chem Eur J 11:57

    Article  Google Scholar 

  16. Telfer SG, Sato T, Kuroda R (2004) Angew Chem Int Ed 43:581

    Article  CAS  Google Scholar 

  17. Ou GC, Li ZZ, Zhang M, Yuan XY (2014) Transit Met Chem 39:135

    Article  CAS  Google Scholar 

  18. Ou GC, Li ZZ, Zhang M, Yuan XY (2014) Chin J Struct Chem 33:707

    CAS  Google Scholar 

  19. Ou GC, Li ZZ, Zhang M, Yuan XY (2014) Transit Met Chem 39:393

    Article  CAS  Google Scholar 

  20. Ou GC, Zhang M, Li ZZ, Yuan XY (2014) Chin J Inorg Chem 30:1459

    CAS  Google Scholar 

  21. Ou GC, Yuan XY, Li ZZ (2013) Z Anorg Allg Chem 639:158

    Article  CAS  Google Scholar 

  22. Ou GC, Feng XL, Lu TB (2011) Cryst Growth Des 11:851

    Article  CAS  Google Scholar 

  23. Ou GC, Yuan XY, Jiang XP (2011) Transit Met Chem 36:189

    Article  CAS  Google Scholar 

  24. Ou GC, Wang ZZ, Yang LZ, Zhao CY, Lu TB (2010) Dalton Trans 39:4274

    Article  CAS  Google Scholar 

  25. Ou GC, Jiang L, Feng XL, Lu TB (2008) Inorg Chem 47:2710

    Article  CAS  Google Scholar 

  26. Paliwoda D, Dziubek KF, Katrusiak A (2012) Cryst Growth Des 12:4302

    Article  CAS  Google Scholar 

  27. Morimoto M, Irie M (2011) Chem Commun 47:4186

    Article  CAS  Google Scholar 

  28. Tait AM, Busch DH (1978) Inorg Synth 18:4

    Google Scholar 

  29. Sheldrick GM (1996) SADABS, program for empirical absorption correction of area detector data. University of Göttingen, Göttingen

    Google Scholar 

  30. Sheldrick GM (2008) Acta Cryst A64:112

    Article  Google Scholar 

  31. Ou GC, Zhang M, Li ZZ, Yuan XY (2014) Inorg Chim Acta 411:11

    Article  CAS  Google Scholar 

  32. Zheng XD, Jiang L, Feng XL, Lu TB (2008) Inorg Chem 47:10858

    Article  CAS  Google Scholar 

  33. Jiang L, Lu TB, Feng XL (2005) Inorg Chem 44:7056

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Hunan Province (2015JJ2072), the Construct Program of the Key Discipline in Hunan Province (2011-76), the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province (2012-318), the Program for Excellent Talents in Hunan University of Science and Engineering (2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Chuan Ou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, GC., Liu, F., Ding, MH. et al. CO2 fixation by macrocyclic nickel(II) complexes: synthesis and structures of helical chains constructed via hydrogen bonds involving imidazole. Transition Met Chem 40, 171–178 (2015). https://doi.org/10.1007/s11243-014-9903-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-014-9903-0

Keywords

Navigation