Skip to main content
Log in

Improved synthetic routes to tungsten(IV) bromide complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Convenient synthetic routes to the compounds WBr4 (1), WBr4(MeCN)2 (2), WBr4(THF)2 (3), WBr4(PPh3)2 (4), WBr4(bpy) (6), and WBr4(dppe) (7) are described via the solution-phase oxidation of W(CO)6 using two equivalents of bromine. These one-pot syntheses use inexpensive and readily available starting materials and produce analytically pure compounds with high yields under mild conditions. Attempts to grow crystals of 1 by heating in a sealed tube at ~200 °C resulted in formation of the previously reported compound WOBr4. Attempts to recrystallize 4 from dichloromethane solution produced [HPPh3]2[WBr6] (5). X-ray crystallographic studies showed that 5 consists of an array of [WBr6]2− anions and [HPPh3]+ cations and that 7·CH2Cl2 has the expected six-coordinate tungsten center. The synthesis of tungsten(IV) bromide compounds via oxidation of W(CO)6 is simple and provides better yields than previously reported methods. This synthetic route also has many advantages over the syntheses of similar tungsten(IV) chloride compounds which involve reduction of WCl6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kolesnichenko V, Swenson DC, Messerle L (1998) Inorg Chem 37:3257–3262

    Article  CAS  Google Scholar 

  2. McCarley RE, Brown TM (1964) Inorg Chem 3:1232–1236

    Article  CAS  Google Scholar 

  3. Hogue RD, McCarley RE (1970) Inorg Chem 9:1354–1360

    Article  CAS  Google Scholar 

  4. Mussell RD, Nocera DG (1990) Inorg Chem 29:3711–3717

    Article  CAS  Google Scholar 

  5. Salliant R, Hayden JL, Wentworth RAD (1967) Inorg Chem 6:1497–1501

    Article  Google Scholar 

  6. Shchukarev SA, Kokovin GA (1964) Zhur Neorg Khim 9(6):1309–1315

    CAS  Google Scholar 

  7. Crouch PC, Fowles GWA, Gerald WA, Walton RA (1970) J Inorg Nucl Chem 32(1):329–333

    Article  CAS  Google Scholar 

  8. Ströbele M, Meyer H-J (2012) Russ J Coord Chem 38(3):178–182

    Article  Google Scholar 

  9. Druce PM, Lappert MF, Riley PNK (1967) Chem Comm 10:486–487

    Google Scholar 

  10. Druce PM, Lappert MF (1971) J Chem Soc (A) 22:3595–3599

    Article  Google Scholar 

  11. Shchukarev SA, Kokovin GA (1964) Russ J Inorg Chem 9(6):715–718

    Google Scholar 

  12. Allen EA, Brisdon BJ, Fowles GWA (1964) J Chem Soc 11:4531–4534

  13. Brown TM, Ruble B (1967) Inorg Chem 6:1335–1338

    Article  CAS  Google Scholar 

  14. Brisdon AK, Hope EG, Levason W, Ogden JS (1989) J Chem Soc Dalton Trans 2:313–316

  15. McCarley RE, Brown TM (1962) J Am Chem Soc 84:3216

    Article  CAS  Google Scholar 

  16. Holmes M, Sendlinger SC (1999) Syn React Inorg Met Org Chem 29(1):143–153

    Article  CAS  Google Scholar 

  17. Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliarov F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford

  18. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  19. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  20. Schmider HL, Becke AD (1998) J Chem Phys 108:9624–9631

    Article  CAS  Google Scholar 

  21. Schaefer King MA, McCarley RE (1973) Inorg Chem 12:1972–1979

    Article  Google Scholar 

  22. Edwards DA, Marshalsea J (1975) Syn React Inorg Met Org Chem 5(2):139–149

    Article  CAS  Google Scholar 

  23. Scheer M, Nam TT, Herrmann E, Fedin VP, Ikorski VN, Fedorov VE (1990) Z Anorg Allg Chem 589:214–220

    Article  CAS  Google Scholar 

  24. Persson C, Andersson C (1993) Inorg Chim Acta 203:235–238

    Article  CAS  Google Scholar 

  25. Cotton FA, Eglin JL, James GA (1993) Inorg Chem 32:681–686

    Article  CAS  Google Scholar 

  26. Butcher AV, Charr J, Leigh GJ, Richards RL (1972) J Chem Soc Dalton Trans 10:1064–1069

    Article  Google Scholar 

  27. Hull CG, Stiddard MHB (1966) J Chem Soc (A) 11:1633–1635

    Article  Google Scholar 

  28. Stoll C, Lorenz I-P, Nöth H, Ponikwar W (2000) J Organomet Chem 602:24–28

    Article  CAS  Google Scholar 

  29. Boorman PM, Greenwood NN, Hildon MA (1968) J Chem Soc (A) 10:2466–2467

    Article  Google Scholar 

  30. Dilworth JR, Richards RL (1990) Inorg Synth 28:33–43

    CAS  Google Scholar 

  31. Cannell PJH, McCarley RE, Hogue RD (1967) Inorg Synth 10:49–54

    Google Scholar 

  32. Vasilkova IV, Efimov AI, Pitrimov BZ (1964) Khim Redk Elem 47:44–50

    Google Scholar 

  33. Vasil’kova IV, Efimov AI, Pitrimov BZ (1975) Chem Abstr 83:171891j

    Google Scholar 

  34. Fowles GWA, Frost JL (1967) J Chem Soc (A) 4:671–675

    Article  Google Scholar 

  35. Müller U (1984) Acta Cryst C40:915–917

    Google Scholar 

  36. Shiskin NY, Zharskill IM, Novikov GI (1981) J Mol Struct 73:249–252

    Article  Google Scholar 

  37. Drew MGB, Page EM, Rice DA (1983) J Chem Soc Dalton Trans 61–63

  38. Willing VW, Müller U (1987) Acta Cryst C43:1425–1426

    CAS  Google Scholar 

Download references

Acknowledgments

W.R.H. acknowledges the Partnership for Minority Access to Doctoral Degrees program of the National Institutes of Health for financial support. This work was supported by the Donors of the Petroleum Research Fund administered by the American Chemical Society, the Research Corporation (Cottrell College Science Award to S.C.S.), and the North Carolina Space Grant Consortium. The Varian Unity INOVA NMR spectrometer was purchased with funds provided by the US Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn C. Sendlinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuiyan, M.A.I., Hargrove, W.R., Metz, C.R. et al. Improved synthetic routes to tungsten(IV) bromide complexes. Transition Met Chem 40, 613–621 (2015). https://doi.org/10.1007/s11243-015-9954-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-015-9954-x

Keywords

Navigation