Skip to main content
Log in

Special Sites at Noble and Late Transition Metal Catalysts

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

An overview of recent advancements in density functional theory modeling of particularly reactive sites at noble and late transition metal surfaces is given. Such special sites include sites at the flat surfaces of thin metal films, sites at stepped surfaces, sites at the metal/oxide interface boundary for oxide-supported metal clusters, and sites at the perimeter of oxide islands grown on metal surfaces. The Newns–Anderson model of the electronic interaction underlying chemisorption is described. This provides the grounds for introducing the Hammer–Nørskov d-band model that correlates changes in the energy center of the valence d-band density of states at the surface sites with their ability to form chemisorption bonds. A reactivity change described by this model is characterized as an electronic structure effect. Brønsted plots of energy barriers versus reaction energies are discussed from the surface reaction perspective and are used to analyze the trends in the calculated changes. Deviations in the relation between energy barriers and reaction energies in Brønsted plots are identified as due to atomic structure effects. The reactivity change from pure Pd surfaces to Pd thin films supported on MgO can be assigned to an electronic effect. Likewise for the reactivity change from flat Au surfaces, over Au thin films to Au edges and the Au/MgO interface boundary. The reactivity enhancement at atomic step sites is of both electronic and atomic structure nature for NO dissociation at Ru, Rh and Pd surfaces. The enhancement of the CO oxidation reactivity when moving from a CO+O coadsorption structure on Pt(111) to the PtO2 oxide island edges supported by Pt(111) is, however, identified as mainly an atomic structure effect. As such, it is linked to the occurrence of favorable pathways at the oxide island edges and is occurring despite of stronger adsorbate binding of the oxygen within the oxide edge, i.e. despite of an opposing electronic effect. As a final topic, a discussion is given of the accuracy of density functional theory in conjunction with surface reactions; adsorption, desorption, diffusion, and dissociation. Energy barriers are concluded to be more robust with respect to changes in the exchange-correlation functional than are molecular bond and adsorption energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Groß (2002) Surf. Sci. 500 347

    Google Scholar 

  2. H. Grönbeck (2004) Topics Catal. 28 59 Occurrence Handle10.1023/B:TOCA.0000024334.52677.67

    Article  Google Scholar 

  3. Z.P. Liu P. Hu (2004) Topics Catal. 28 71 Occurrence Handle10.1023/B:TOCA.0000024335.88459.81

    Article  Google Scholar 

  4. G.P. Brivio M.I. Trioni (1999) Rev. Mod. Phys. 71 231 Occurrence Handle10.1103/RevModPhys.71.231 Occurrence Handle1:CAS:528:DyaK1MXhsV2rur0%3D

    Article  CAS  Google Scholar 

  5. D.J. Lavrich S.M. Wetterer S.L. Bernasek G. Scoles (1998) J. Phys. Chem. B 102 3456 Occurrence Handle10.1021/jp980047v Occurrence Handle1:CAS:528:DyaK1cXivVOktbs%3D

    Article  CAS  Google Scholar 

  6. W.A. Brown R. Kose D.A. King (1998) Chem. Rev. 98 797 Occurrence Handle10.1021/cr9700890 Occurrence Handle1:CAS:528:DyaK1cXhs1Grtr0%3D

    Article  CAS  Google Scholar 

  7. Q.F. Ge R. Kose D.A. King (2000) Adv. Catal. 45 207 Occurrence Handle1:CAS:528:DC%2BD3cXlslaju78%3D

    CAS  Google Scholar 

  8. B. Hammer J.K. Nørskov (2000) Adv. Catal. 45 71 Occurrence Handle1:CAS:528:DC%2BD3cXlslajurc%3D

    CAS  Google Scholar 

  9. D.M. Newns (1969) Phys. Rev. 178 1123 Occurrence Handle10.1103/PhysRev.178.1123 Occurrence Handle1:CAS:528:DyaF1MXpvF2gtA%3D%3D

    Article  CAS  Google Scholar 

  10. B. Hammer (1998) Faraday Discuss. 110 323 Occurrence Handle10.1039/a801126e Occurrence Handle1:CAS:528:DyaK1cXnsFOlt7o%3D

    Article  CAS  Google Scholar 

  11. E.O.F. Zdansky A. Nilsson H. Tillborg O. Björneholm N. Mårtensson J.N. Andersen R. Nyholm (1993) Phys. Rev. B 48 2632 Occurrence Handle10.1103/PhysRevB.48.2632 Occurrence Handle1:CAS:528:DyaK3sXmtlOjuro%3D

    Article  CAS  Google Scholar 

  12. T. Wiell H. Tillborg A. Nilsson N. Wassdahl N. Mårtensson J. Nordgren (1994) Surf. Sci. 304 L451 Occurrence Handle10.1016/0039-6028(94)91326-9 Occurrence Handle1:CAS:528:DyaK2cXitVWhu7c%3D

    Article  CAS  Google Scholar 

  13. T. Wiell J.E. Klepeis P. Bennich O. Björneholm N. Wassdahl A. Nilsson (1998) Phys. Rev. B 58 1655 Occurrence Handle10.1103/PhysRevB.58.1655 Occurrence Handle1:CAS:528:DyaK1cXktlyjsL8%3D

    Article  CAS  Google Scholar 

  14. A. Föhlisch M. Nyberg P. Bennich L. Triguero J. Hasselström O. Karis L.G.M. Pettersson A. Nilsson (2000) J. Chem. Phys. 112 1946

    Google Scholar 

  15. A. Föhlisch M. Nyberg J. Hasselström O. Karis L.G.M. Pettersson A. Nilsson (2000) Phys. Rev. Lett. 85 3309 Occurrence Handle10.1103/PhysRevLett.85.3309

    Article  Google Scholar 

  16. A. Nilsson L.G.M. Pettersson B. Hammer T. Bligaard C.H. Christensen J.K. Nørskov (2005) Catal. Lett. 100 111 Occurrence Handle10.1007/s10562-004-3434-9 Occurrence Handle1:CAS:528:DC%2BD2MXivVOntLc%3D

    Article  CAS  Google Scholar 

  17. T. Bligaard J.K. Nørskov S. Dahl J. Matthiesen C.H. Christensen J. Sehested (2004) J. Catal. 224 206 Occurrence Handle10.1016/j.jcat.2004.02.034 Occurrence Handle1:CAS:528:DC%2BD2cXjsVejtbw%3D

    Article  CAS  Google Scholar 

  18. B. Hammer J.K. Nørskov (1995) Nature 376 238 Occurrence Handle10.1038/376238a0 Occurrence Handle1:CAS:528:DyaK2MXntFSmurk%3D

    Article  CAS  Google Scholar 

  19. B. Hammer and J.K. Nørskov, Surf. Sci. 343 (1995) 211; ibid. 359 (1996) 306 (E)

  20. B. Hammer Y. Morikawa J.K. Nørskov (1996) Phys. Rev. Lett. 76 2141 Occurrence Handle10.1103/PhysRevLett.76.2141 Occurrence Handle1:CAS:528:DyaK28Xhs12qsrc%3D

    Article  CAS  Google Scholar 

  21. B. Hammer O.H. Nielsen J.K. Nørskov (1997) Catal. Lett. 46 31 Occurrence Handle10.1023/A:1019073208575 Occurrence Handle1:CAS:528:DyaK2sXksFyrsb0%3D

    Article  CAS  Google Scholar 

  22. B. Hammer and J.K. Nørskov, in: Chemisorption and Reactivity on Supported Clusters and Thin Films NATOASI Series E: Applied Sciences, R.M. Lambert and G. Pacchioni (eds), Vol. 331 (Kluwer, Dordrecht, 1997), pp. 285–351

  23. A. Bogicevic D.R. Jennison (1999) Phys. Rev Lett. 82 4050 Occurrence Handle1:CAS:528:DyaK1MXjtF2gur8%3D

    CAS  Google Scholar 

  24. D.R. Jennison A. Bogicevic (2000) Surf. Sci. 464 108 Occurrence Handle10.1016/S0039-6028(00)00578-1 Occurrence Handle1:CAS:528:DC%2BD3cXotFKiu7s%3D

    Article  CAS  Google Scholar 

  25. A.E. Mattsson D.R. Jennison (2002) Surf. Sci. 520 L611 Occurrence Handle10.1016/S0039-6028(02)02209-4 Occurrence Handle1:CAS:528:DC%2BD38Xotl2jsbk%3D

    Article  CAS  Google Scholar 

  26. B. Hammer (2002) Phys. Rev. Lett. 89 016102 Occurrence Handle10.1103/PhysRevLett.89.016102 Occurrence Handle1:STN:280:DC%2BD38zlsVyjsA%3D%3D

    Article  CAS  Google Scholar 

  27. A. Roudgar A. Groß (2003) J. Electroanal. Chem. 548 121 Occurrence Handle10.1016/S0022-0728(03)00230-4 Occurrence Handle1:CAS:528:DC%2BD3sXjvVamt70%3D

    Article  CAS  Google Scholar 

  28. H. Gronbeck P. Broqvist (2003) J. Phys. Chem. B 107 12239 Occurrence Handle10.1021/jp036004i

    Article  Google Scholar 

  29. B. Hammer K.W. Jacobsen J.K. Nørskov (1992) Phys. Rev. Lett. 69 1971 Occurrence Handle10.1103/PhysRevLett.69.1971 Occurrence Handle1:CAS:528:DyaK38XlvF2hurk%3D

    Article  CAS  Google Scholar 

  30. J.J. Mortensen, Y. Morikawa, B. Hammer and J.K. Nørskov, J. Catal. 169 (1997) 85; ibid. 170 (1997) 412 (E)

  31. A. Alavi P.J. Hu T. Deutsch P.L. Silvestrelli J. Hutter (1998) Phys. Rev. Lett. 80 3650 Occurrence Handle10.1103/PhysRevLett.80.3650 Occurrence Handle1:CAS:528:DyaK1cXisVGkurk%3D

    Article  CAS  Google Scholar 

  32. G. Henkelman B.P. Uberuaga H. Jonsson (2000) J. Chem. Phys. 113 9901 Occurrence Handle1:CAS:528:DC%2BD3cXosFagurc%3D

    CAS  Google Scholar 

  33. D. Loffreda F. Delbecq D. Simon P. Sautet (2001) J. Chem. Phys. 115 8101 Occurrence Handle10.1063/1.1379578 Occurrence Handle1:CAS:528:DC%2BD3MXns1KnsLk%3D

    Article  CAS  Google Scholar 

  34. C.C. Cudia S.W. Hla G. Comelli Z. Sljivancanin B. Hammer A. Baraldi K.C. Prince R. Rosei (2001) Phys. Rev. Lett. 87 196104

    Google Scholar 

  35. M. Mavrikakis B. Hammer J.K. Nørskov (1998) Phys. Rev. Lett. 81 2819 Occurrence Handle10.1103/PhysRevLett.81.2819

    Article  Google Scholar 

  36. Y. Xu and M. Mavrikakis, Surf. Sci. 494 (2001) 131; ibid. 505 (2002) 369 (E)

  37. B. Hammer (2001) Phys. Rev. B 63 205423 Occurrence Handle10.1103/PhysRevB.63.205423

    Article  Google Scholar 

  38. F. Delbecq P. Sautet (1999) Phys. Rev. B 59 5142 Occurrence Handle10.1103/PhysRevB.59.5142 Occurrence Handle1:CAS:528:DyaK1MXhtVKmsr4%3D

    Article  CAS  Google Scholar 

  39. N. Lopez J.K. Norskov (2001) Surf. Sci. 477 59 Occurrence Handle1:CAS:528:DC%2BD3MXisFGnu7w%3D

    CAS  Google Scholar 

  40. J. Greeley M. Mavrikakis (2004) Nat. Mat. 3 810 Occurrence Handle1:CAS:528:DC%2BD2cXptV2htLo%3D

    CAS  Google Scholar 

  41. A. Groß, Topics Catal. 37 (2006) 29

  42. N. Brønsted (1928) Chem. Rev. 5 231

    Google Scholar 

  43. R.A. van Santen Particlevan M. Neurock (1995) Catal. Rev. Sci. Eng. 37 557 Occurrence Handle1:CAS:528:DyaK2MXovFGntb4%3D

    CAS  Google Scholar 

  44. B. Hammer (1999) Phys. Rev. Lett. 83 3681 Occurrence Handle10.1103/PhysRevLett.83.3681 Occurrence Handle1:CAS:528:DyaK1MXmvFKkt7g%3D

    Article  CAS  Google Scholar 

  45. A. Logadottir T.H. Rod J.K. Nørskov B. Hammer S. Dahl C.J.H. Jacobsen (2001) J. Catal. 197 229 Occurrence Handle10.1006/jcat.2000.3087 Occurrence Handle1:CAS:528:DC%2BD3MXhsF2isLk%3D

    Article  CAS  Google Scholar 

  46. J.K. Nørskov T. Bligaard A. Logadottir S. Bahn L.B. Hansen M. Bollinger H. Bengaard B. Hammer Z. Sljivancanin M. Mavrikakis Y. Xu S. Dahl C.J. H. Jacobsen (2002) J. Catal. 209 275 Occurrence Handle10.1006/jcat.2002.3615

    Article  Google Scholar 

  47. Z.P. Liu P. Hu (2001) J. Chem. Phys. 114 8244 Occurrence Handle1:CAS:528:DC%2BD3MXjt1Cjtrk%3D

    CAS  Google Scholar 

  48. Z.P. Liu P. Hu (2001) J. Chem. Phys. 115 4977 Occurrence Handle1:CAS:528:DC%2BD3MXms1Cltbk%3D

    CAS  Google Scholar 

  49. Z.P. Liu P. Hu (2003) J. Am. Chem. Soc. 125 1958 Occurrence Handle1:CAS:528:DC%2BD3sXkvFKmtQ%3D%3D

    CAS  Google Scholar 

  50. A. Michaelides Z.P. Liu C.J. Zhang A. Alavi D.A. King P. Hu (2003) J. Am. Chem. Soc. 125 3704 Occurrence Handle1:CAS:528:DC%2BD3sXhslSlsLs%3D

    CAS  Google Scholar 

  51. X.Q. Gong Z.P. Liu R. Raval P. Hu (2004) J. Am. Chem. Soc. 126 8 Occurrence Handle1:CAS:528:DC%2BD3sXpslWnsbg%3D

    CAS  Google Scholar 

  52. P. Hanesch E. Bertel (1997) Phys. Rev. Lett. 79 1523 Occurrence Handle10.1103/PhysRevLett.79.1523 Occurrence Handle1:CAS:528:DyaK2sXlvVCru7c%3D

    Article  CAS  Google Scholar 

  53. J. Gustafson M. Borg A. Mikkelsen S. Gorovikov E. Lundgren J.N. Andersen (2003) Phys. Rev. Lett. 91 056102 Occurrence Handle10.1103/PhysRevLett.91.056102 Occurrence Handle1:STN:280:DC%2BD3szntlWktw%3D%3D

    Article  CAS  Google Scholar 

  54. A. Baraldi S. Lizzit G. Comelli M. Kiskinova R. Rosei K. Honkala J.K. Norskov (2004) Phys. Rev. Lett. 93 046101 Occurrence Handle10.1103/PhysRevLett.93.046101 Occurrence Handle1:STN:280:DC%2BD2cvitVGisA%3D%3D

    Article  CAS  Google Scholar 

  55. B. Hammer (2000) Surf. Sci. 459 323 Occurrence Handle10.1016/S0039-6028(00)00467-2 Occurrence Handle1:CAS:528:DC%2BD3cXktlCmt7c%3D

    Article  CAS  Google Scholar 

  56. T. Zambelli J. Wintterlin J. Trost G. Ertl (1996) Science 273 1688 Occurrence Handle1:CAS:528:DyaK28XlslGqu7k%3D

    CAS  Google Scholar 

  57. S. Dahl A. Logadottir R.C. Egeberg J.H. Larsen I. Chorkendorff E. Tornqvist J.K. Nørskov (1999) Phys. Rev. Lett. 83 1814 Occurrence Handle10.1103/PhysRevLett.83.1814

    Article  Google Scholar 

  58. S. Dahl E. Törngvist I. Chorkendorff (2000) J. Catal. 192 381 Occurrence Handle1:CAS:528:DC%2BD3cXjs1WgsL4%3D

    CAS  Google Scholar 

  59. P. Gambardella Z. Sljivancanin B. Hammer M. Blanc K. Kuhnke K. Kern (2001) Phys. Rev. Lett. 87 056103 Occurrence Handle10.1103/PhysRevLett.87.056103 Occurrence Handle1:STN:280:DC%2BD3MvltFyktw%3D%3D

    Article  CAS  Google Scholar 

  60. B. Hammer (2001) J. Catal. 199 171 Occurrence Handle10.1006/jcat.2000.3147 Occurrence Handle1:CAS:528:DC%2BD3MXis1Sjur8%3D

    Article  CAS  Google Scholar 

  61. L. Savio L. Vattuone M. Rocca (2001) Phys. Rev. Lett. 87 276101 Occurrence Handle10.1103/PhysRevLett.87.276101 Occurrence Handle1:STN:280:DC%2BD38%2FnsFSktg%3D%3D

    Article  CAS  Google Scholar 

  62. Z. Sljivancanin B. Hammer (2002) Surf. Sci. 515 235 Occurrence Handle10.1016/S0039-6028(02)01908-8 Occurrence Handle1:CAS:528:DC%2BD38XlvVSrsb4%3D

    Article  CAS  Google Scholar 

  63. M. Mavrikakis M. Baumer H.J. Freund J.K. Nørskov (2002) Catal. Lett. 81 153 Occurrence Handle10.1023/A:1016560502889 Occurrence Handle1:CAS:528:DC%2BD38XlsVerur0%3D

    Article  CAS  Google Scholar 

  64. Z. Sljivancanin B. Hammer (2002) Phys. Rev. B 65 085414

    Google Scholar 

  65. Y. Xu M. Mavrikakis (2003) J. Phys. Chem. B 107 9298 Occurrence Handle1:CAS:528:DC%2BD3sXmtFClsLg%3D

    CAS  Google Scholar 

  66. D. Loffreda D. Simon P. Sautet (2003) J. Catal. 213 211 Occurrence Handle10.1016/S0021-9517(02)00030-1 Occurrence Handle1:CAS:528:DC%2BD3sXkvVOgsw%3D%3D

    Article  CAS  Google Scholar 

  67. Z.P. Liu S.J. Jenkins D.A. King (2003) J. Am. Chem. Soc. 125 14660 Occurrence Handle1:CAS:528:DC%2BD3sXos1Cisbs%3D

    CAS  Google Scholar 

  68. Q. Ge M. Neurock (2004) J. Am. Chem. Soc. 126 1551 Occurrence Handle10.1021/ja036575o Occurrence Handle1:CAS:528:DC%2BD2cXmtV2ktw%3D%3D

    Article  CAS  Google Scholar 

  69. A. Wille P. Nickut K. Al-Shamery (2004) J. Mol. Struct. 695 345 Occurrence Handle10.1016/j.molstruc.2004.01.005

    Article  Google Scholar 

  70. E.H.G. Backus A. Eichler M.L. Grecea A.W. Kleyn M. Bond (2004) J. Chem. Phys. 121 7946 Occurrence Handle1:CAS:528:DC%2BD2cXos1Cls78%3D

    CAS  Google Scholar 

  71. Z. Sljivancanin K.V. Gothelf B. Hammer (2002) J. Am. Chem. Soc. 124 14789 Occurrence Handle10.1021/ja027239v Occurrence Handle1:CAS:528:DC%2BD38Xos1ejtL8%3D

    Article  CAS  Google Scholar 

  72. C.V. Ovesen P. Stoltze J.K. Nørskov C.T. Campbell (1992) J. Catal. 134 445 Occurrence Handle10.1016/0021-9517(92)90334-E Occurrence Handle1:CAS:528:DyaK38XitVWrtbo%3D

    Article  CAS  Google Scholar 

  73. E.W. Hansen M. Neurock (1999) Chem. Eng. Sci. 54 3411 Occurrence Handle1:CAS:528:DyaK1MXksVSlur0%3D

    CAS  Google Scholar 

  74. M. Neurock S.A. Wasileski D. Mei (2004) Chem. Eng. Sci. 59 4703 Occurrence Handle1:CAS:528:DC%2BD2cXhtVCqtrnO

    CAS  Google Scholar 

  75. K. Reuter D. Frenkel M. Scheffler (2004) Phys. Rev. Lett. 93 116105 Occurrence Handle10.1103/PhysRevLett.93.116105

    Article  Google Scholar 

  76. K. Honkala A. Hellman I.N. Remediakis A. Logadottir A. Carlsson S. Dahl C.H. Christensen J.K. Nørskov (2005) Science 307 555 Occurrence Handle10.1126/science.1106435 Occurrence Handle1:CAS:528:DC%2BD2MXmslOjuw%3D%3D

    Article  CAS  Google Scholar 

  77. J. Hafner Topics Catal. 37 (2006) 41

  78. C.R. Henry (1998) Surf. Sci. Rep. 31 231 Occurrence Handle10.1016/S0167-5729(98)00002-8 Occurrence Handle1:CAS:528:DyaK1cXlt1aiurw%3D

    Article  CAS  Google Scholar 

  79. M. Haruta N. Yamada T. Kobayashi S. Iijima (1989) J. Catal. 115 301 Occurrence Handle10.1016/0021-9517(89)90034-1 Occurrence Handle1:CAS:528:DyaL1MXhtVamsbY%3D

    Article  CAS  Google Scholar 

  80. M. Valden X. Lai D.W. Goodman (1998) Science 281 1647 Occurrence Handle10.1126/science.281.5383.1647 Occurrence Handle1:CAS:528:DyaK1cXmtVSqu7w%3D

    Article  CAS  Google Scholar 

  81. R. Meyer C. Lemire S.K. Shaikhutdinov H.J. Freund (2004) Gold Bull. 37 72 Occurrence Handle1:CAS:528:DC%2BD2cXnt1emsLg%3D

    CAS  Google Scholar 

  82. M. Mavrikakis P. Stoltze J.K. Nørskov (2000) Catal. Lett. 64 101 Occurrence Handle10.1023/A:1019028229377 Occurrence Handle1:CAS:528:DC%2BD3cXhslSgtLk%3D

    Article  CAS  Google Scholar 

  83. N. Lopez T.V.W. Janssens B.S. Clausen Y. Xu M. Mavrikakis T. Bligaard J.K. Nørskov (2004) J. Catal. 223 232 Occurrence Handle10.1016/j.jcat.2004.01.001 Occurrence Handle1:CAS:528:DC%2BD2cXislWjsb4%3D

    Article  CAS  Google Scholar 

  84. L.M. Molina B. Hammer (2003) Phys. Rev. Lett. 90 206102 Occurrence Handle10.1103/PhysRevLett.90.206102 Occurrence Handle1:STN:280:DC%2BD3s3mtlaisw%3D%3D

    Article  CAS  Google Scholar 

  85. L.M. Molina B. Hammer (2004) Phys. Rev. B 69 155424 Occurrence Handle10.1103/PhysRevB.69.155424

    Article  Google Scholar 

  86. L.M. Molina M.D. Rasmussen B. Hammer (2004) J. Chem. Phys. 120 7673 Occurrence Handle10.1063/1.1687337 Occurrence Handle1:CAS:528:DC%2BD2cXivFOnt7c%3D

    Article  CAS  Google Scholar 

  87. P. Broqvist L.M. Molina H. Grönbeck B. Hammer (2004) J. Catal. 227 217 Occurrence Handle10.1016/j.jcat.2004.07.009 Occurrence Handle1:CAS:528:DC%2BD2cXntV2nsrY%3D

    Article  CAS  Google Scholar 

  88. L.M. Molina and B. Hammer, Appl. Catal. A: General 291 (2005) 21

    Google Scholar 

  89. Z.P. Liu X.Q. Gong J. Kohanoff C. Sanchez P. Hu (2003) Phys. Rev. Lett. 91 266102

    Google Scholar 

  90. I.N. Remediakis N. Lopez J.K. Nørskov (2005) Angew. Chem. Int. Ed. 44 1824 Occurrence Handle10.1002/anie.200461699 Occurrence Handle1:CAS:528:DC%2BD2MXislWkur8%3D

    Article  CAS  Google Scholar 

  91. A. Eichler J. Hafner (1999) Surf. Sci. 433–435 58

    Google Scholar 

  92. A. Eichler J. Hafner (1999) Phys. Rev. B 59 5960 Occurrence Handle1:CAS:528:DyaK1MXhtF2mt7c%3D

    CAS  Google Scholar 

  93. N. Lopez J.K. Nørskov (2002) J. Am. Chem. Soc. 124 11262 Occurrence Handle1:CAS:528:DC%2BD38Xms1Wntb8%3D

    CAS  Google Scholar 

  94. Z.P. Liu P. Hu A. Alavi (2002) J. Am. Chem. Soc. 124 14770 Occurrence Handle1:CAS:528:DC%2BD38Xos1Sgs7w%3D

    CAS  Google Scholar 

  95. H. Over Y.D. Kim A.P. Seitsonen S. Wendt E. Lundgren M. Schmid P. Varga A. Morgante G. Ertl (2000) Science 287 1474 Occurrence Handle10.1126/science.287.5457.1474 Occurrence Handle1:CAS:528:DC%2BD3cXhsV2qt7g%3D

    Article  CAS  Google Scholar 

  96. B.L.M. Hendriksen J.W.M. Frenken (2002) Phys. Rev. Lett. 89 046101 Occurrence Handle10.1103/PhysRevLett.89.046101 Occurrence Handle1:STN:280:DC%2BD38zps1Kntw%3D%3D

    Article  CAS  Google Scholar 

  97. T.W. Hansen J.B. Wagner P.L. Hansen S. Dahl H. Topsoe C.J.H. Jacobsen (2001) Science 294 1508 Occurrence Handle10.1126/science.1064399 Occurrence Handle1:CAS:528:DC%2BD3MXosFCrsLY%3D

    Article  CAS  Google Scholar 

  98. Z.P. Liu S.J. Jenkins D.A. King (2004) J. Am. Chem. Soc. 126 10746 Occurrence Handle1:CAS:528:DC%2BD2cXmt12ktL0%3D

    CAS  Google Scholar 

  99. W.X. Li and B. Hammer, Chem. Phys. Lett. 409 (2005) 1

    Google Scholar 

  100. J. Wintterlin S. Völkening T.V.W. Janssens T. Zambelli G. Ertl (1997) Science 278 1931 Occurrence Handle10.1126/science.278.5345.1931 Occurrence Handle1:CAS:528:DyaK2sXotVCnurs%3D

    Article  CAS  Google Scholar 

  101. J.P. Perdew K. Burke M. Ernzerhof (1996) Phys. Rev. Lett. 77 3865 Occurrence Handle10.1103/PhysRevLett.77.3865 Occurrence Handle1:CAS:528:DyaK28XmsVCgsbs%3D

    Article  CAS  Google Scholar 

  102. J.P. Perdew J.A. Chevary S.H. Vosko K.A. Jackson M.R. Pederson D.J. Singh C. Fiolhais (1992) Phys. Rev. B 46 6671 Occurrence Handle1:CAS:528:DyaK38XlvFyks7c%3D

    CAS  Google Scholar 

  103. B. Hammer L.B. Hansen J.K. Nørskov (1999) Phys. Rev. B 59 7413 Occurrence Handle10.1103/PhysRevB.59.7413

    Article  Google Scholar 

  104. S. Kurth J.P. Perdew P. Blaha (1999) Int. J. Quant. Chem. 75 889 Occurrence Handle10.1002/(SICI)1097-461X(1999)75:4/5<889::AID-QUA54>3.0.CO;2-8 Occurrence Handle1:CAS:528:DyaK1MXntlyks7o%3D

    Article  CAS  Google Scholar 

  105. P.J. Feibelman B. Hammer J.K. Nørskov F. Wagner M. Scheffler R. Stumpf R. Watwe J. Dumesic (2001) J. Phys. Chem. B 105 4018 Occurrence Handle10.1021/jp002302t Occurrence Handle1:CAS:528:DC%2BD3cXotFymsrs%3D

    Article  CAS  Google Scholar 

  106. A. Gil, A. Clotet, J.M. Ricart, G. Kresse, M. Garcia Hernandez, N. Rosch and P. Sautet, Surf. Sci. 530 (2003) 71

  107. S.E. Mason I. Grinberg A.M. Rappe (2004) Phys. Rev. B 69 161401 Occurrence Handle10.1103/PhysRevB.69.161401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammer, B. Special Sites at Noble and Late Transition Metal Catalysts. Top Catal 37, 3–16 (2006). https://doi.org/10.1007/s11244-006-0004-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-006-0004-y

Keywords

Navigation