Skip to main content

Advertisement

Log in

Electrocatalysis for the direct alcohol fuel cell

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

The basic principles of a direct alcohol fuel cell are first presented. Low temperature fuel cells (working between ambient temperature and 80–120 °C) need improved catalysts to reach performance levels sufficient for practical applications, particularly for the electric vehicle and for portable electronic devices. This is the case of proton exchange membrane fuel cells (PEMFC) and of direct alcohol fuel cells (DAFC) for which the kinetics of the electrochemical reactions involved (oxidation of reformate hydrogen containing some traces of carbon monoxide, oxidation of alcohols, reduction of oxygen) is rather slow. Basic understanding of electrocatalysis is then examined, showing how to increase the reaction rate both by the nature and the structure of the catalytic electrode and by the electrode potential. Finally the most used Pt-based electrocatalysts to activate the electrode reactions occurring in a direct ethanol fuel cell (DEFC) are discussed on the basis of electrochemical, spectro-electrochemical and fuel cell experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.R. Grove (1839) Phil. Mag. 14 127

    Google Scholar 

  2. W.R. Grove (1839) Phil. Mag. 15 287

    Google Scholar 

  3. J.W. Gosselink (2002) Int. J. Hydrogen Energy 27 1125 Occurrence Handle10.1016/S0360-3199(02)00092-7 Occurrence Handle1:CAS:528:DC%2BD38Xnt1KisL8%3D

    Article  CAS  Google Scholar 

  4. R. Ströbel M. Oszcipok M. Fasil B. Rohland L. Jörissen J. Garche (2002) J. Power Sources 105 208 Occurrence Handle10.1016/S0378-7753(01)00941-7

    Article  Google Scholar 

  5. C. Lamy J.-M. Léger (1994) J. Phys. IV 4 C1 Occurrence Handle10.1051/jp1:1994117

    Article  Google Scholar 

  6. C. Lamy A. Lima V. Rhun ParticleLe F. Delime C. Coutanceau J.-M. Léger (2002) J. Power Sources 105 283 Occurrence Handle10.1016/S0378-7753(01)00954-5 Occurrence Handle1:CAS:528:DC%2BD38XitVyju7w%3D

    Article  CAS  Google Scholar 

  7. E. Peled T. Duvdevani A. Aharon A. Melman (2001) Electrochem. Solid State Lett. 44 A38 Occurrence Handle10.1149/1.1355036

    Article  Google Scholar 

  8. C. Lamy, J.-M. Léger and S. Srinivasan, in: Modern Aspects of Electrochemistry, Vol. 34, eds. J.O’M. Bockris and B.E. Conway (Plenum Press, New York, 2000), ch. 3, pp. 53–117

  9. C. Lamy E.M. Belgsir J.-M. Léger (2001) J. Appl. Electrochem. 31 799 Occurrence Handle10.1023/A:1017587310150 Occurrence Handle1:CAS:528:DC%2BD3MXlvFSnsbo%3D

    Article  CAS  Google Scholar 

  10. T. Iwasita-Vielstich, in: Advances in Electrochemical Science and Engineering, Vol. 1, eds. H. Gerischer and C.W. Tobias (VCH Verlag, Weinheim, 1990) p. 127

  11. A. Hamnett (1997) Catal. Today 38 445 Occurrence Handle10.1016/S0920-5861(97)00054-0 Occurrence Handle1:CAS:528:DyaK2sXnvF2ksrY%3D

    Article  CAS  Google Scholar 

  12. K.-Y. Chan J. Ding J. Ren S. Cheng K.Y. Tsang (2004) J. Mater. Chem. 14 505 Occurrence Handle10.1039/b314224h Occurrence Handle1:CAS:528:DC%2BD2cXhtlWmtrc%3D

    Article  CAS  Google Scholar 

  13. J.O’M. Bockris A.K.N. Reddy (1972) Modern Electro-chemistry NumberInSeries2 Plenum Press New York 1141

    Google Scholar 

  14. G.P. Sakellaropoulos, in: Advances in Catalysis, eds. D.D. Eley, H. Pines and P.B. Weisz (Academic Press, New York, 1981) p. 218

  15. A.J. Appleby, in: Comprehensive Treatise of Electrochemistry, Vol. 7, eds. B.E. Conway, J.O’M. Bockris, E. Yeager, S.U.M. Khan and R.E. White (Plenum Press, New York, 1983) pp. 173–239

  16. H. Bönneman W. Brijoux R. Brinkmann E. Dinjus T. Joussen B. Korall (1991) Angew. Chem. Int. Engl. 30 1312 Occurrence Handle10.1002/anie.199113121

    Article  Google Scholar 

  17. L. Dubau C. Coutanceau E. Garnier J.-M. Léger C. Lamy (2003) J. Appl. Electrochem. 33 419 Occurrence Handle10.1023/A:1024491007321 Occurrence Handle1:CAS:528:DC%2BD3sXkvVensrg%3D

    Article  CAS  Google Scholar 

  18. C. Lamy S. Rousseau E.M. Belgsir C. Coutanceau J.-M. Léger (2004) Electrochim. Acta 49 3901 Occurrence Handle10.1016/j.electacta.2004.01.078 Occurrence Handle1:CAS:528:DC%2BD2cXlsFektrg%3D

    Article  CAS  Google Scholar 

  19. F. Gloaguen F. Andolfatto R. Durand P. Ozil (1994) J. Appl. Electrochem. 24 861 Occurrence Handle10.1007/BF00348773

    Article  Google Scholar 

  20. A. Kabbabi R. Faure R. Durand B. Beden F. Hahn J.-M. Léger C. Lamy (1998) J. Electroanal. Chem. 444 41 Occurrence Handle10.1016/S0022-0728(97)00558-5 Occurrence Handle1:CAS:528:DyaK1cXitFKgtrs%3D

    Article  CAS  Google Scholar 

  21. S. Rousseau, C. Coutanceau, C. Lamy and J.-M. Léger, J. Power Sources (2005 in press)

  22. R.A. Rightmire R.L. Rowland D.L. Boos D.L. Beals (1964) J. Electrochem. Soc. 111 242 Occurrence Handle1:CAS:528:DyaF2cXjs1KisA%3D%3D

    CAS  Google Scholar 

  23. T. Iwasita E. Pastor (1994) Electrochim. Acta 39 531 Occurrence Handle10.1016/0013-4686(94)80097-9 Occurrence Handle1:CAS:528:DyaK2cXksFKru7g%3D

    Article  CAS  Google Scholar 

  24. T. Iwasita E. Pastor (1994) Electrochim. Acta 39 547 Occurrence Handle10.1016/0013-4686(94)80099-5

    Article  Google Scholar 

  25. C. Lamy A. Lima V. Rhun ParticleLe F. Delime C. Coutanceau J.-M. Léger (2002) J. Power Sources 105 283 Occurrence Handle10.1016/S0378-7753(01)00954-5 Occurrence Handle1:CAS:528:DC%2BD38XitVyju7w%3D

    Article  CAS  Google Scholar 

  26. J. Wang S. Wasmus R.F. Savinell (1995) J. Electrochem. Soc. 142 4218 Occurrence Handle10.1149/1.2048487 Occurrence Handle1:CAS:528:DyaK2MXpvFentrg%3D

    Article  CAS  Google Scholar 

  27. J. Souza F.J.B. Rabelo I.R. Moraes Particlede F.C. Nart (1997) J. Electroanal. Chem. 420 17 Occurrence Handle10.1016/S0022-0728(96)01019-4 Occurrence Handle1:CAS:528:DyaK2sXislOis7g%3D

    Article  CAS  Google Scholar 

  28. H. Hitmi, PhD Thesis (University of Poitiers, 1992)

  29. F. Delime J.-M. Léger C. Lamy (1999) J. Appl. Electrochem. 29 1249 Occurrence Handle10.1023/A:1003788400636 Occurrence Handle1:CAS:528:DyaK1MXmvVantro%3D

    Article  CAS  Google Scholar 

  30. C. Lamy E.-M. Belgsir J.-M. Léger (2001) J. Appl. Electrochem. 31 799 Occurrence Handle10.1023/A:1017587310150 Occurrence Handle1:CAS:528:DC%2BD3MXlvFSnsbo%3D

    Article  CAS  Google Scholar 

  31. A. Rezzouk, PhD Thesis (University of Poitiers, 1994)

  32. M. Bonarowska A. Malinowski Z. Karpinski (1999) Appl. Catal. A: General 188 145 Occurrence Handle10.1016/S0926-860X(99)00241-0 Occurrence Handle1:CAS:528:DyaK1MXntVaisbY%3D

    Article  CAS  Google Scholar 

  33. A.K. Aboul-Gheit M.F. Menoufy A.K. El-Morsi (1990) Appl. Catal. 61 283 Occurrence Handle10.1016/S0166-9834(00)82151-X Occurrence Handle1:CAS:528:DyaK3cXks1agu7o%3D

    Article  CAS  Google Scholar 

  34. H. Hitmi E.-M. Belgsir J.-M. Léger C. Lamy R.O. Lezna (1994) Electrochim. Acta 39 407 Occurrence Handle10.1016/0013-4686(94)80080-4 Occurrence Handle1:CAS:528:DyaK2cXhsVOjurw%3D

    Article  CAS  Google Scholar 

  35. B. Beden C. Lamy A. Bewick K. Kunimatsu (1981) J. Electroanal. Chem. 121 343 Occurrence Handle1:CAS:528:DyaL3MXitVShtbk%3D

    CAS  Google Scholar 

  36. K. Kunimatsu (1982) J. Electroanal. Chem. 140 205 Occurrence Handle10.1016/0368-1874(82)85315-X Occurrence Handle1:CAS:528:DyaL3sXisVyrsw%3D%3D

    Article  CAS  Google Scholar 

  37. B. Beden F. Hahn S. Juanto C. Lamy J.-M. Léger (1987) J. Electroanal. Chem. 225 215 Occurrence Handle10.1016/0022-0728(87)80015-3 Occurrence Handle1:CAS:528:DyaL2sXltVentLo%3D

    Article  CAS  Google Scholar 

  38. M. Watanabe S. Motoo (1975) J. Electroanal. Chem. 60 275 Occurrence Handle10.1016/S0022-0728(75)80262-2 Occurrence Handle1:CAS:528:DyaE2MXks1Oqt70%3D

    Article  CAS  Google Scholar 

  39. S.C. Chang L.W. Leung M.J. Weaver (1990) J. Phys. Chem. 94 6013 Occurrence Handle10.1021/j100378a072 Occurrence Handle1:CAS:528:DyaK3cXks1Ohu7g%3D

    Article  CAS  Google Scholar 

  40. T. Iwasita B. Rasch E. Cattaneo W. Vielstich (1989) Electrochim. Acta 34 1073 Occurrence Handle10.1016/0013-4686(89)87139-7

    Article  Google Scholar 

  41. B. Rasch T. Iwasita (1990) Electrochim. Acta 35 989 Occurrence Handle10.1016/0013-4686(90)90032-U Occurrence Handle1:CAS:528:DyaK3cXks1Ogsbo%3D

    Article  CAS  Google Scholar 

  42. P. Liu A. Logadottir J.K. Nørskov (2003) Electrochim. Acta 48 3731 Occurrence Handle10.1016/S0013-4686(03)00538-3 Occurrence Handle1:CAS:528:DC%2BD3sXnvF2rsb8%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Lamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vigier, F., Rousseau, S., Coutanceau, C. et al. Electrocatalysis for the direct alcohol fuel cell. Top Catal 40, 111–121 (2006). https://doi.org/10.1007/s11244-006-0113-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-006-0113-7

Keywords

Navigation