Skip to main content
Log in

Understanding Trends in Catalytic Activity: The Effect of Adsorbate–Adsorbate Interactions for CO Oxidation Over Transition Metals

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced and the effect of adsorbate–adsorbate interaction on the trends is discussed. We find that adsorbate–adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano) but the interactions do not change the relative activity of different metals and have a very small influence on the position of the top of the volcano, that is, on which metal is the best catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Self-consistent, periodic density functional theory (DFT) calculations were performed using the Dacapo total energy code using the RPBE exchange-correlation functional [53]. Ultrasoft Vanderbilt pseudopotentials are used to describe the core electrons and the Kohn-Sham one electron valence states are expanded in a plane wave basis set with a kinetic energy cutoff below 408 eV [54]. The electron density is determined by iterative diagonalization of the Kohn-Sham Hamiltonian, Fermi population of the Kohn-Sham states (kbT = 0.1 eV), and Pulay mixing of the resulting electron density [55]. Total energies are then extrapolated to kbT = 0 eV [56]. Sampling of the surface Brillouin zone was done using a 6 × 4 × 1 Monkhorst-Pack k-point set [57]. Fcc(111) surfaces of Au, Ag, Cu, Pd, Pt, Ni, and Rh were modeled as slabs with a (2 × 3) unit cell and four atomic layers. A vacuum of 10 Å separates successive slabs along the normal direction of the surface. The top two layers were allowed to relax, while the bottom two layers were kept fixed in their bulk truncated positions

References

  1. Somorjai GA, Park JY (2009) Surf Sci 603:1293–1300

    Article  CAS  Google Scholar 

  2. Ertl G (2008) Angew Chem Int Ed 47:3524–3535

    Article  CAS  Google Scholar 

  3. Yates JT Jr (2009) Surf Sci 603:1605–1612

    Article  CAS  Google Scholar 

  4. Hammer B, Nørskov JK (2000) In: Gates BC, Knözinger H (eds) Advances in catalysis, vol. 45. Academic Press, San Diego and London, pp 71–129

  5. Greeley J, Nørskov JK, Mavrikakis M (2002) Annu Rev Phys Chem 53:319–348

    Article  CAS  Google Scholar 

  6. Linic S, Jankowiak J, Barteau MA (2004) J Catal 224:489–493

    Article  CAS  Google Scholar 

  7. Wasileski S, Taylor C, Neurock M (2009) In: Device and materials modeling in PEM fuel cells, vol. 113. Springer, Berlin/Heidelberg, pp 551–574

  8. Koper MTM, Santen RAV, Wasileski SA, Weaver MJ (2000) J Chem Phys 113:4392–4407

    Article  CAS  Google Scholar 

  9. Michaelides A, Hu P (2001) J Am Chem Soc 123:4235–4242

    Article  CAS  Google Scholar 

  10. Getman RB, Schneider WF, Smeltz AD, Delgass WN, Ribeiro FH (2009) Phys Rev Lett 102:4

    Article  Google Scholar 

  11. Huang P, Carter EA (2008) Annu Rev Phys Chem 59:261–290

    Article  CAS  Google Scholar 

  12. Hafner J (2008) J Comput Chem 29:2044–2078

    Article  CAS  Google Scholar 

  13. Chrétien S, Buratto SK, Metiu H (2007) Curr Opin Solid State Mater Sci 11:62–75

    Article  Google Scholar 

  14. Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A, Dahl S, Christensen CH, Nørskov JK (2005) Science 307:555–558

    Article  CAS  Google Scholar 

  15. Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) J Catal 209:275–278

    Article  Google Scholar 

  16. Michaelides A, Liu Z-P, Zhang CJ, Alavi A, King DA, Hu P (2003) J Am Chem Soc 125:3704–3705

    Article  CAS  Google Scholar 

  17. Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) J Catal 224:206–217

    Article  CAS  Google Scholar 

  18. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skúlason E, Bligaard T, Nørskov JK (2007) Phys Rev Lett 99:016104–016105

    Article  Google Scholar 

  19. Fernandez EM, Moses PG, Toftelund A, Hansen HA, Martinez JI, Abild-Pedersen F, Kleis J, Hinnemann B, Rossmeisl J, Bligaard T, Nørskov JK (2008) Angew Chem Int Ed 47:4683–4686

    Article  CAS  Google Scholar 

  20. Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Törnqvist E, Nørskov JK (1999) Phys Rev Lett 83:1814

    Article  Google Scholar 

  21. Kandoi S, Greeley J, Sanchez-Castillo MA, Evans ST, Gokhale AA, Dumesic JA, Mavrikakis M (2006) Top Catal 37:17–28

    Article  CAS  Google Scholar 

  22. Reuter K, Scheffler M (2004) Appl Phys A 78:793–798

    Article  CAS  Google Scholar 

  23. Getman RB, Xu Y, Schneider WF (2008) J Phys Chem C 112:9559–9572

    Article  CAS  Google Scholar 

  24. Shi H, Stampfl C (2007) Phys Rev B 76

  25. Soon A, Todorova M, Delley B, Stampfl C (2006) Phys Rev B 73

  26. Reuter K, Frenkel D, Scheffler M (2004) Phys Rev Lett 93:116105

    Article  Google Scholar 

  27. Miller SD, Kitchin JR (2009) Surf Sci 603:794–801

    Article  CAS  Google Scholar 

  28. Hammer B (2001) Phys Rev B 63:205423

    Article  Google Scholar 

  29. Mhadeshwar AB, Kitchin JR, Barteau MA, Vlachos DG (2004) Catal Lett 96:13–22

    Article  CAS  Google Scholar 

  30. Getman RB, Schneider WF, unpublished results

  31. Smeltz AD, Getman RB, Schneider WF, Ribeiro FH (2008) Catal Today 136:84–92

    Article  CAS  Google Scholar 

  32. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nat Chem 1:37–46

    Article  Google Scholar 

  33. Wintterlin J, Volkening S, Janssens TVW, Zambelli T, Ertl G (1997) Science 278:1931–1934

    Article  CAS  Google Scholar 

  34. Dumesic JA, Topsøe H, Boudart M (1975) J Catal 37:513–522

    Article  CAS  Google Scholar 

  35. Grunwaldt JD, Molenbroek AM, Topsøe NY, Topsøe H, Clausen BS (2000) J Catal 194:452–460

    Article  CAS  Google Scholar 

  36. Wagner JB, Hansen PL, Molenbroek AM, Topsøe H, Clausen BS, Helveg S (2003) J Phys Chem B 107:7753–7758

    Article  CAS  Google Scholar 

  37. Topsøe H (2003) J Catal 216:155–164

    Article  Google Scholar 

  38. Thomas JM, Hernandez-Garrido J-C (2009) Angew Chem Int Ed 48:3904–3907

    Article  CAS  Google Scholar 

  39. Hofmann S, Sharma R, Ducati C, Du G, Mattevi C, Cepek C, Cantoro M, Pisana S, Parvez A, Cervantes-Sodi F, Ferrari AC, Dunin-Borkowski R, Lizzit S, Petaccia L, Goldoni A, Robertson J (2007) Nano Lett 7:602–608

    Article  CAS  Google Scholar 

  40. van Bokhoven JA, Kartusch C, Satav S (2009) CHIMIA Int J Chem 63:111–114

    Article  Google Scholar 

  41. Rosenthal D, Girgsdies F, Timpe O, Blume R, Weinberg G, Teschner D, Schlögl R (2009) Z Phys Chem Int J Res Phys Chem Chem Phys 223:183–207

    CAS  Google Scholar 

  42. Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsøe H (2002) Science 295:2053–2055

    Article  CAS  Google Scholar 

  43. Bocquet ML, Michaelides A, Sautet P, King DA (2003) Phys Rev B 68:7

    Article  Google Scholar 

  44. Stampfl C, Soon A, Piccinin S, Shi HQ, Zhang H (2008) J Phys Condens Matter 20:19

    Article  Google Scholar 

  45. Lukaski A, Barteau M (2009) Catal Lett 128:9–17

    Article  CAS  Google Scholar 

  46. Michaelides A, Reuter K, Scheffler M, Vac J (2005) Sci Technol A 23:1487–1497

    CAS  Google Scholar 

  47. Reichelt R, Gunther S, Rossler M, Wintterlin J, Kubias B, Jakobi B, Schlogl R (2007) Phys Chem Chem Phys 9:3590–3599

    Article  CAS  Google Scholar 

  48. Bukhtiyarov VI, Nizovskii AI, Bluhm H, Havecker M, Kleimenov E, Knop-Gericke A, Schlogl R (2006) J Catal 238:260–269

    Article  CAS  Google Scholar 

  49. Grass ME, Zhang YW, Butcher DR, Park JY, Li YM, Bluhm H, Bratlie KM, Zhang TF, Somorjai GA (2008) Angew Chem Int Ed 47:8893–8896

    Article  CAS  Google Scholar 

  50. Gao F, McClure SM, Cai Y, Gath KK, Wang Y, Chen MS, Guo QL, Goodman DW (2009) Surf Sci 603:65–70

    Article  CAS  Google Scholar 

  51. Alayon EMC, Singh J, Nachtegaal M, Harfouche M, van Bokhoven JA (2009) J Catal 263:228–238

    Article  CAS  Google Scholar 

  52. Ackermann MD, Pedersen TM, Hendriksen BLM, Robach O, Bobaru SC, Popa I, Quiros C, Kim H, Hammer B, Ferrer S, Frenken JWM (2005) Phys Rev Lett 95

  53. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413

    Article  Google Scholar 

  54. Vanderbilt D (1990) Phys Rev B 41:7892–7895

    Article  Google Scholar 

  55. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  56. Gillan MJ (1989) J Phys Condens Matter 1:689–711

    Article  CAS  Google Scholar 

  57. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  58. Falsig H, Hvolbæk B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Nørskov JK (2008) Angew Chem Int Ed 47:4835–4839

    Article  CAS  Google Scholar 

  59. Jiang T, Mowbray DJ, Dobrin S, Falsig H, Hvolbæk B, Bligaard T, Nørskov JK (2009) J Phys Chem C 113:10548–10553

    Article  CAS  Google Scholar 

  60. Feibelman PJ, Hammer B, Nørskov JK, Wagner F, Scheffler M, Stumpf R, Watwe R, Dumesic J (2001) J Phys Chem B 105:4018–4025

    Article  CAS  Google Scholar 

  61. Abild-Pedersen F, Andersson MP (2007) Surf Sci 601:1747–1753

    Article  CAS  Google Scholar 

  62. Tang HR, Van A, der Ven Trout BL (2004) Mol Phys 102:273–279

    Article  CAS  Google Scholar 

  63. Nagasaka M, Kondoh H, Nakai I, Ohta T (2007) J Chem Phys 126:044704

    Article  Google Scholar 

  64. Gland JL, Kollin EB (1983) J Chem Phys 78:963–974

    Article  CAS  Google Scholar 

  65. Ertl G, Norton PR, Rüstig J (1982) Phys Rev Lett 49:177

    Article  CAS  Google Scholar 

  66. Ertl G (1991) Science 254:1750–1755

    Article  CAS  Google Scholar 

  67. Graham MD, Kevrekidis IG, Asakura K, Lauterbach J, Krischer K, Rotermund H-H, Ertl G (1994) Science 264:80–82

    Article  CAS  Google Scholar 

  68. Cirak F, Cisternas JE, Cuitino AM, Ertl G, Holmes P, Kevrekidis IG, Ortiz M, Rotermund HH, Schunack M, Wolff J (2003) Science 300:1932–1936

    Article  CAS  Google Scholar 

  69. Imbihl R (1993) Prog Surf Sci 44:185–343

    Article  CAS  Google Scholar 

  70. Kim M, Bertram M, Pollmann M, Oertzen AV, Mikhailov AS, Rotermund HH, Ertl G (2001) Science 292:1357–1360

    Article  CAS  Google Scholar 

  71. Wolff J, Papathanasiou AG, Kevrekidis IG, Rotermund HH, Ertl G (2001) Science 294:134–137

    Article  CAS  Google Scholar 

  72. Oertzen AV, Rotermund HH, Mikhailov AS, Ertl G (2000) J Phys Chem B 104:3155–3178

    Article  Google Scholar 

  73. Temel B, Meskine H, Reuter K, Scheffler M, Metiu H (2007) J Chem Phys 126:204711

    Article  Google Scholar 

  74. Hellman A, Honkala K (2007) J Chem Phys. 127:194704

  75. Xu Y, Ruban AV, Mavrikakis M (2004) J Am Chem Soc 126:4717–4725

    Article  CAS  Google Scholar 

  76. Hammer B, Nørskov JK (1995) Surf Sci 343:211–220

    Article  CAS  Google Scholar 

  77. Lide DR (ed) (2010) CRC Handbook of Chemistry and Physics, 90th edn (Internet Version 2010). CRC Press/Taylor and Francis, Boca Raton, FL

  78. Yeo YY, Vattuone L (1997) J Chem Phys 106:392

    Article  CAS  Google Scholar 

  79. Wartnaby CE, Stuck A, Yeo YY, King DA (1996) J Phys Chem 100:12483–12488

    Article  CAS  Google Scholar 

  80. Pfnur H, Feulner P, Menzel D (1983) J Chem Phys 79:4613–4623

    Article  Google Scholar 

  81. Christmann K, Schober O, Ertl G (1974) J Chem Phys 60:4719–4724

    Article  CAS  Google Scholar 

  82. Castner DG, Sexton BA, Somorjai GA (1978) Surf Sci 71:519–540

    Article  CAS  Google Scholar 

  83. Lee H-I, White JM (1980) J Catal 63:261–264

    Article  CAS  Google Scholar 

  84. Peden CHF, Goodman DW (1986) J Phys Chem 90:1360–1365

    Article  CAS  Google Scholar 

  85. Goodman DW, Peden CHF, Chen MS (2007) Surf Sci 601:L124–L126

    Article  CAS  Google Scholar 

  86. Over H, Muhler M, Seitsonen AP (2007) Surf Sci 601:5659–5662

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The center for Atomic-scale Materials Design is supported by the Lundbeck Foundation. In addition we thank the Danish Research Council for the Technical Sciences and the NABIIT program for financial support, and the Danish Center for Scientific Computing for computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens K. Nørskov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabow, L.C., Hvolbæk, B. & Nørskov, J.K. Understanding Trends in Catalytic Activity: The Effect of Adsorbate–Adsorbate Interactions for CO Oxidation Over Transition Metals. Top Catal 53, 298–310 (2010). https://doi.org/10.1007/s11244-010-9455-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-010-9455-2

Keywords

Navigation