Skip to main content
Log in

Methanol Adsorption on V2O3(0001)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Well ordered V2O3(0001) layers may be grown on Au(111) surfaces. These films are terminated by a layer of vanadyl groups which may be removed by irradiation with electrons, leading to a surface terminated by vanadium atoms. We present a study of methanol adsorption on vanadyl terminated and vanadium terminated surfaces as well as on weakly reduced surfaces with a limited density of vanadyl oxygen vacancies produced by electron irradiation. Different experimental methods and density functional theory are employed. For vanadyl terminated V2O3(0001) only molecular methanol adsorption was found to occur whereas methanol reacts to form formaldehyde, methane, and water on vanadium terminated and on weakly reduced V2O3(0001). In both cases a methoxy intermediate was detected on the surface. For weakly reduced surfaces it could be shown that the density of methoxy groups formed after methanol adsorption at low temperature is twice as high as the density of electron induced vanadyl oxygen vacancies on the surface which we attribute to the formation of additional vacancies via the reaction of hydroxy groups to form water which desorbs below room temperature. Density functional theory confirms this picture and identifies a methanol mediated hydrogen transfer path as being responsible for the formation of surface hydroxy groups and water. At higher temperature the methoxy groups react to form methane, formaldehyde, and some more water. The methane formation reaction consumes hydrogen atoms split off from methoxy groups in the course of the formaldehyde production process as well as hydrogen atoms still being on the surface after being produced at low temperature in the course of the methanol → methoxy + H reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Grzybowska-Swierkosz B, Trifiro F, Vedrine JC (eds) (1997) Vanadia catalysts for selective oxidation of hydrocarbons and their derivatives. In: Applied catalysis A: general, vol 157. Elsevier, Amsterdam

  2. Busca G, Lietti L, Ramis G, Berti F (1998) Appl Catal B 18:1

  3. Cai Y, Ozkan US (1991) Appl Catal 78:241

  4. Wachs IE (2005) Catal Today 100:79

  5. Burcham LJ, Deo G, Gao X, Wachs IE (2000) Top Catal 11/12:85

  6. Romanyshyn Y, Guimond S, Kuhlenbeck H, Kaya S, Blum RP, Niehus H, Shaikhutdinov S, Simic-Milosevic V, Nilius N, Freund H-J, Ganduglia-Pirovano MV, Fortrie R, Döbler J, Sauer J (2008) Top Catal 50:106

  7. Wang Q, Madix RJ (2002) Surf Sci 496:51

  8. Wong GS, Concepcion MR, Vohs JM (2002) J Phys Chem B 106:6451

    Google Scholar 

  9. Wong GS, Kragten DD, Vohs JM (2000) Surf Sci 452:L293

  10. Wong GS, Kragten DD, Vohs JM (2001) J Phys Chem B 105:1366

    Google Scholar 

  11. Farfan-Arribas E, Madix RJ (2003) Surf Sci 544:241

  12. Mullins DR, Robbins MD, Zhou J (2006) Surf Sci 600:1547

  13. Dupuis A-C, Abu Haija M, Richter B, Kuhlenbeck H, Freund H-J (2003) Surf Sci 539:99

  14. Feulner P, Menzel D (1980) J Vac Sci Technol 17:662

    Google Scholar 

  15. Abu Haija M, Guimond S, Romanyshyn Y, Uhl A, Kuhlenbeck H, Todorova TK, Ganduglia-Pirovano MV, Döbler J, Sauer J, Freund H-J (2006) Surf Sci 600:1497

  16. Kresse G, Surnev S, Schoiswohl J, Netzer FP (2004) Surf Sci 555:118

  17. Schoiswohl J, Sock M, Surnev S, Ramsey MG, Netzer FP, Kresse G, Andersen JN (2004) Surf Sci 555:101

  18. Nilius N, Brázdová V, Ganduglia-Pirovano M-V, Simic-Milosevic V, Sauer J, Freund H-J (2009) New J Phys 11:093007

    Google Scholar 

  19. NIST chemistry WebBook. http://www.webbook.nist.gov/chemistry/

  20. Pratt SJ, Escott DK, King DA (2003) J Chem Phys 119:10868

    Google Scholar 

  21. Bolina AS, Wolff AJ, Brown WA (2005) J Chem Phys 122:044713

    Google Scholar 

  22. Mudalige K, Trenary M (2002) Surf Sci 504:208

  23. de Barros RB, Garcia AR, Ilharco LM (2003) Surf Sci 532:185

  24. Andersson MP, Uvdal P, MacKerell AD Jr (2002) J Phys Chem B 106:5200

    Google Scholar 

  25. Crossley A, King DA (1977) Surf Sci 68:528

  26. Crossley A, King DA (1980) Surf Sci 95:131

  27. Linke R, Curulla D, Hopstaken MJP, Niemantsverdriet JW (2001) J Chem Phys 115:8209

    Google Scholar 

  28. Hammaker RM, Francis SA, Eischens RP (1965) Spectrochim Acta 21:1295

  29. Prince KC, Richter R, de Simone M, Alagia M, Coreno M (2003) J Phys Chem A 107:1955

    Google Scholar 

  30. Plashkevych O, Privalov T, Ågren H, Carravetta V, Ruud K (2000) Chem Phys 260:11

  31. Prince KC, Richter R, de Simone M, Coreno M (2002) Surf Rev Lett 9:159

    Google Scholar 

  32. Stöhr J, Outka DA, Baberschke K, Arvanitis D, Horsley JA (1987) Phys Rev B 36:2976

    Google Scholar 

  33. Stöhr J, Sette F, Johnson AL (1984) Phys Rev Lett 53:1684

    Google Scholar 

  34. Lindner Th, Somers J, Bradshaw AM, Kilcoyne ALD, Woodruff DP (1988) Surf Sci 203:333

  35. Outka DA, Stöhr J, Madix RJ, Rotermund HH, Hermsmeier B, Solomon J (1987) Surf Sci 185:53

  36. Ishii I, Hitchcock AP (1988) J Electron Spectrosc Relat Phenom 46:55

    Google Scholar 

  37. Mensch MW, Byrd CM, Cox DF (2003) Catal Today 85:279

  38. Zhou J, Mullins DR (2006) Surf Sci 600:1540

  39. Abu Haija M, Guimond S, Uhl A, Kuhlenbeck H, Freund H-J (2006) Surf Sci 600:1040

  40. Göbke D, Romanyshyn Y, Guimond S, Sturm JM, Kuhlenbeck H, Döbler J, Reinhardt U, Ganduglia-Pirovano MV, Sauer J, Freund H-J (2009) Angew Chem Int Ed 48:3695

    Google Scholar 

  41. Redhead PA (1962) Vacuum 12:203

    Google Scholar 

  42. Grimme S (2006) J Comput Chem 27:1787

    Google Scholar 

  43. Kerber T, Sierka M, Sauer J (2008) J Comput Chem 29:2088

    Google Scholar 

  44. Svelle S, Tuma C, Rozanska X, Kerber T, Sauer J (2009) J Am Chem Soc 131:816

    Google Scholar 

  45. Döbler J, Pritzsche M, Sauer J (2005) J Am Chem Soc 127:10861

    Google Scholar 

  46. Sauer J, Döbler J (2004) Dalton Trans 19:3116

  47. Rozanska X, Sauer J (2008) Int J Quantum Chem 108:2223

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft through their Sonderforschungsbereich 546 ‘Transition Metal Oxide Aggregates’. The Fonds der Chemischen Industrie is gratefully acknowledged for financial support. We acknowledge the Helmholtz-Zentrum Berlin—Electron storage ring BESSY II for provision of synchrotron radiation at beamline UE52-PGM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kuhlenbeck.

Additional information

Dedicated to Professor Robert K. Grasselli on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanyshyn, Y., Guimond, S., Göbke, D. et al. Methanol Adsorption on V2O3(0001). Top Catal 54, 669–684 (2011). https://doi.org/10.1007/s11244-011-9685-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9685-y

Keywords

Navigation