Skip to main content
Log in

XPS–SIMS Surface Characterization of Aluminovanadate Oxide Catalyst Precursors Co-Precipitated at Different pH: Effect of Calcination

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry were employed in a comparative study of the surface physical and chemical state of aluminovanadate oxide catalyst precursors (V–Al–O), which were precipitated in the range of pH from 5.5 to 10, after drying and calcination. Core-level photoelectron spectra, X-ray induced Auger and valence band spectra of the samples were measured so as to quantitatively evaluate the surface concentrations of the catalyst components. The binding energy shifts of the respective O 1s, V 2p and Al 2p lines were determined as a function of pH and analyzed in terms of the initial state effect related to the atomic charge and Madelung potential. The surface of the catalysts was composed of aluminum hydroxide/oxyhydroxide and of dispersed vanadium oxide species. Increasing pH was found to result in a monotonic variation of the elemental surface composition, modification of the valence band, progressive hydroxylation of the surface and increasing dispersion of vanadium oxide species. Increasing pH was also accompanied by an increase in the abundance of V4+ species, specific surface area and reducibility. Calcination in air at 500 °C gave rise to surface segregation of vanadium, changes in the valence band and partial dehydroxylation. The structural transformations in vanadium oxide species and aluminium hydroxide support and their interaction were accompanied by an increasing abundance of V–O–Al bonds. The net result of the restructuring was a decrease in the specific surface area and reducibility of the calcined catalysts. The enhancement of the catalytic activity in propane oxidative dehydrogenation demonstrated by V–Al–O samples with increasing precipitation pH and after calcination was in good correlation with a growing population of the V4+ states and increasing nucleophilicity of oxygen sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wachs IE, Weckhuysen BM (1997) Appl Catal A 157:67

    Article  CAS  Google Scholar 

  2. Weckhuysen BM, Keller DE (2003) Catal Today 78:25

    Article  CAS  Google Scholar 

  3. Mamedov EA, Cortés Corberán V (1995) Appl Catal A 127:1

    Article  CAS  Google Scholar 

  4. Smits RHH, Seshan K, Leemreize H, Ross JRH (1993) Catal Today 16:513

    Article  CAS  Google Scholar 

  5. Watling TC, Deo G, Seshan K, Wachs IE, Lercher JA (1996) Catal Today 28:139

    Article  CAS  Google Scholar 

  6. Wachs IE (2011) Appl Catal A 391:36

    Article  CAS  Google Scholar 

  7. Pieck CL, Bañares MA, Fierro JLG (2004) J Catal 224:1

    Article  CAS  Google Scholar 

  8. Shee D, Deo G (2008) Catal Lett 124:340

    Article  CAS  Google Scholar 

  9. Reddy BM, Chowdhury B, Ganesh I, Reddy EP, Rojas TC, Fernández A (1998) J Phys Chem B 102:10176

    Article  CAS  Google Scholar 

  10. Reddy BM, Chowdhury B, Reddy EP, Fernández A (2001) Langmuir 17:1132

    Article  CAS  Google Scholar 

  11. Reddy BM, Ganesh I, Reddy EP, Fernández A, Smirniotis PG (2001) J Phys Chem B 105:6227

    Article  CAS  Google Scholar 

  12. Reddy BM, Sreekanth PM, Reddy EP, Yamada Y, Xu Q, Sakurai H, Kobayashi T (2002) J Phys Chem B 106:5695

    Article  CAS  Google Scholar 

  13. Casaletto MP, Lisi L, Mattogno G, Patrono P, Ruoppolo G (2004) Surf Interface Anal 36:737

    Article  CAS  Google Scholar 

  14. Casaletto MP, Kaciulis S, Lisi L, Mattogno G, Mezzi A, Patrono P, Ruoppolo G (2001) Appl Catal A 218:129

    Article  CAS  Google Scholar 

  15. Casaletto MP, Lisi L, Mattogno G, Patrono P, Ruoppolo G, Russo G (2002) Appl Catal A 226:41

    Article  CAS  Google Scholar 

  16. Blangenois N, Florea M, Grange P, Prada Silvy R, Chenakin SP, Bastin JM, Kruse N, Barbero BP, Cadús L (2004) Appl Catal A 263:163

    Article  CAS  Google Scholar 

  17. Chenakin SP, Prada Silvy R, Kruse N (2011) Metallofiz Noveishie Tekhnol 33:1487

    CAS  Google Scholar 

  18. Olea M, Florea M, Sack I, Prada Silvy R, Gaigneaux EM, Marin GB, Grange P (2005) J Catal 232:152

    Article  CAS  Google Scholar 

  19. Florea M, Prada Silvy R, Grange P (2003) Catal Lett 87:63

    Article  CAS  Google Scholar 

  20. Silversmit G, Poelman H, De Gryse R, Bras W, Nikitenko S, Florea M, Grange P, Delsarte S (2006) Catal Today 118:344

    Article  CAS  Google Scholar 

  21. Safonova OV, Florea M, Bilde J, Delichere P, Millet JMM (2009) J Catal 268:156

    Article  CAS  Google Scholar 

  22. Florea M, Prada Silvy R, Grange P (2005) Appl Catal A 286:1

    Article  CAS  Google Scholar 

  23. Chenakin SP, Prada Silvy R, Kruse N (2005) J Phys Chem B 109:14611

    Article  CAS  Google Scholar 

  24. Chenakin SP, Prada Silvy R, Kruse N (2007) Surf Interface Anal 39:567

    Article  CAS  Google Scholar 

  25. Rotole JA, Sherwood PMA (1999) J Vac Sci Technol A 17:1091

    Article  CAS  Google Scholar 

  26. Kloprogge JT, Duong LV, Wood BJ, Frost RL (2006) J Colloid Interface Sci 296:572

    Article  CAS  Google Scholar 

  27. Böse O, Kemnitz E, Lippitz A, Unger WES (1997) Fresenius J Anal Chem 358:175

    Article  Google Scholar 

  28. Alexander MR, Thompson GE, Beamson G (2000) Surf Interface Anal 29:468

    Article  CAS  Google Scholar 

  29. Mendialdua J, Casanova R, Barbaux Y (1995) J Electron Spectrosc Relat Phenom 71:249

    Article  CAS  Google Scholar 

  30. Silversmit G, Depla D, Poelman H, Marin GB, De Gryse R (2004) J Electron Spectrosc Relat Phenom 135:167

    Article  CAS  Google Scholar 

  31. Moretti G (1998) J Electron Spectrosc Relat Phenom 95:95

    Article  CAS  Google Scholar 

  32. Matralis HK, Ciardelli M, Ruwet M, Grange P (1995) J Catal 157:368

    Article  CAS  Google Scholar 

  33. Sawatzky GA, Post D (1979) Phys Rev B 20:1546

    Article  CAS  Google Scholar 

  34. Demeter M, Neumann M, Reichelt W (2000) Surf Sci 41:454

    Google Scholar 

  35. Argyle MD, Chen K, Bell AT, Iglesia E (2002) J Catal 208:139

    Article  CAS  Google Scholar 

  36. Martínez-Huerta MV, Gao X, Tian H, Wachs IE, Fierro JLG, Bañares MA (2006) Catal Today 118:279

    Article  Google Scholar 

  37. Santacesaria E, Cozzolino M, Di Serio M, Venezia AM, Tesser R (2004) Appl Catal A 270:177

    Article  CAS  Google Scholar 

  38. Tian H, Ross EI, Wachs IE (2006) J Phys Chem B 110:9593

    Article  CAS  Google Scholar 

  39. Smits RHH, Seshan K, Ross JRH, van den Oetelaar LCA, Helwegen JHJM, Anantharaman MR, Brongersma HH (1995) J Catal 157:584

    Article  CAS  Google Scholar 

  40. Harlin ME, Niemi VM, Krause AOI (2000) J Catal 195:67

    Article  CAS  Google Scholar 

  41. Yan Z-G, Andersson SLT (1990) Appl Catal 66:149

    Article  CAS  Google Scholar 

  42. Casaletto MP, Lisi L, Mattogno G, Patrono P, Ruoppolo G (2004) Appl Catal A 267:157

    Article  CAS  Google Scholar 

  43. Wachs IE (2005) Catal Today 100:79

    Article  CAS  Google Scholar 

  44. Zhdan PA, Shepelin AP, Osipova ZG, Sokolovskii VD (1979) J Catal 58:8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out under financial support of the Direction Générale des Technologies, de la Recherche et de l’Énergie de la Région Wallonne (GREDECAT). A partial financial support from the National Academy of Sciences of Ukraine in the framework of the Fundamental Research Program “Fundamental Problems of Nanostructural Systems, Nanomaterials, Nanotechnologies-2010” is also acknowledged (S. Ch.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kruse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chenakin, S.P., Silvy, R.P. & Kruse, N. XPS–SIMS Surface Characterization of Aluminovanadate Oxide Catalyst Precursors Co-Precipitated at Different pH: Effect of Calcination. Top Catal 55, 731–746 (2012). https://doi.org/10.1007/s11244-012-9872-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9872-5

Keywords

Navigation