Skip to main content
Log in

Finite-Size Effects in O and CO Adsorption for the Late Transition Metals

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Gold is known to become significantly more catalytically active as its particle size is reduced, and other catalysts are also known to exhibit finite-size effects. To understand the trends related to finite-size effects, we have used density functional theory to study adsorption of representative adsorbates, CO and O, on the late transition metals Co, Ni, Cu, Ir, Pd, Ag, Rh, Pt and Au. We studied adsorption energies and geometries on 13-atom clusters and compared them to the fcc(111) and fcc(211) crystal facets. In all cases, adsorbates were found to bind significantly more strongly to the 13-atom clusters than to the extended surfaces. The binding strength of both adsorbates were found to correlate very strongly with the average coordination number of the metal atoms to which the adsorbate binds, indicating that the finite-size effects in bonding are not specific to gold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301

    Article  CAS  Google Scholar 

  2. Valden M, Lai X, Goodman DW (1998) Science 281:1647

    Article  CAS  Google Scholar 

  3. Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Nørskov JK (2004) J Catal 223:232

    Article  CAS  Google Scholar 

  4. Boccuzzi F, Chiorino A, Tsubota S, Haruta M (1996) J Phys Chem 100:3625

    Article  CAS  Google Scholar 

  5. Bamwenda G, Tsubota S, Nakamura T, Haruta M (1997) Catal Lett 44:83

    Article  CAS  Google Scholar 

  6. Minicò S, Scirè S, Crisafulli C, Visco A, Galvagno S (1997) Catal Lett 47:273

    Article  Google Scholar 

  7. Bondzie V, Parker S, Campbell C (1999) Catal Lett 63:143

    Article  CAS  Google Scholar 

  8. Grunwaldt J-D, Kiener C, Wgerbauer C, Baiker A (1999) J Catal 181:223

    Article  CAS  Google Scholar 

  9. Grunwaldt J-D, Baiker A (1999) J Phys Chem B 103:1002

    Article  CAS  Google Scholar 

  10. Sanchez A, Abbet S, Heiz U, Schneider W-D, Häkkinen H, Barnett RN, Landman U (1999) J Phys Chem A 103:9573

    Article  CAS  Google Scholar 

  11. Chusuei C, Lai X, Luo K, Goodman D (2000) Top Catal 14:71

    Article  CAS  Google Scholar 

  12. Mavrikakis M, Stoltze P, Nørskov J (2000) Catal Lett 64:101

    Article  CAS  Google Scholar 

  13. Haruta M, Daté M (2001) Appl Catal A 222:427

    Article  CAS  Google Scholar 

  14. Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) J Catal 197:113

    Article  CAS  Google Scholar 

  15. Costello CK, Kung MC, Oh HS, Wang Y, Kung HH (2002) Appl Catal A 232:159

    Article  CAS  Google Scholar 

  16. Haruta M (2002) CATTECH 6:102

    Article  CAS  Google Scholar 

  17. Lopez N, Nørskov JK (2002) J Am Chem Soc 124:11262

    Article  CAS  Google Scholar 

  18. Mills G, Gordon MS, Metiu H (2002) Chem Phys Lett 359:493

    Article  CAS  Google Scholar 

  19. Pietron JJ, Stroud RM, Rolison DR (2002) Nano Lett 2:545

    Article  CAS  Google Scholar 

  20. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:935

    Article  CAS  Google Scholar 

  21. Molina LM, Hammer B (2003) Phys Rev Lett 90:206102

    Article  CAS  Google Scholar 

  22. Varganov SA, Olson RM, Gordon MS, Metiu H (2003) J Chem Phys 119:2531

    Article  CAS  Google Scholar 

  23. Xu Y, Mavrikakis M (2003) J Phys Chem B 107:9298

    Article  CAS  Google Scholar 

  24. Chen MS, Goodman DW (2004) Science 306:252

    Article  CAS  Google Scholar 

  25. Guzman J, Gates BC (2004) J Am Chem Soc 126:2672

    Article  CAS  Google Scholar 

  26. Lemire C, Meyer R, Shaikhutdinov S, Freund H-J (2004) Angew Chem Int Ed 43:118

    Article  Google Scholar 

  27. Lopez N, Nørskov JK, Janssens TVW, Carlsson A, Puig-Molina A, Clausen BS, Grunwaldt JD (2004) J Catal 225:86

    Article  CAS  Google Scholar 

  28. Meier DC, Goodman DW (2004) J Am Chem Soc 126:1892

    Article  CAS  Google Scholar 

  29. Sanchez-Castillo MA, Couto C, Kim WB, Dumesic JA (2004) Angew Chem Int Ed 43:1140

    Article  CAS  Google Scholar 

  30. Jiang T, Mowbray DJ, Dobrin S, Falsig H, Hvolbæk B, Bligaard T, Nørskov JK (2009) J Phys Chem C 113:10548

    Article  CAS  Google Scholar 

  31. Cuenya BR (2010) Thin Solid Films 518:3127

    Article  CAS  Google Scholar 

  32. Kleis J, Greeley J, Romero N, Morozov V, Falsig H, Larsen A, Lu J, Mortensen J, Duak M, Thygesen K, Nørskov J, Jacobsen K (2011) Catal Lett 141:1067

    Article  CAS  Google Scholar 

  33. Weber AP, Seipenbusch M, Kasper G (2003) J Nanopart Res 5:293

    Article  CAS  Google Scholar 

  34. Sharma RK, Sharma P, Maitra A (2003) J Colloid Interface Sci 265:134

    Article  CAS  Google Scholar 

  35. Bunluesin T, Cordatos H, Gorte RJ (1995) J Catal 157:222

    Article  CAS  Google Scholar 

  36. Okumura M, Masuyama N, Konishi E, Ichikawa S, Akita T (2002) J Catal 208:485

    Article  CAS  Google Scholar 

  37. Schnur S, Groß A (2010) Phys Rev B 81:033402

    Article  Google Scholar 

  38. González Carballo JM, Yang J, Holmen A, García-Rodríguez S, Rojas S, Ojeda M, Fierro JLG (2011) J Catal 284:102

  39. Grabow L, Hvolbæk B, Nørskov J (2010) Top Catal 53:298

    Article  CAS  Google Scholar 

  40. Bahn SR, Jacobsen KW (2002) Comput Sci Eng 4:56

    Article  CAS  Google Scholar 

  41. Both ASE and GPAW are open-source code available from the Department of Physics at the Technical University of Denmark and are available at http://www.camd.dtu.dk/software.aspx

  42. Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71:035109

    Article  Google Scholar 

  43. Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) J Phys Condens Matter 22:253202

    Article  CAS  Google Scholar 

  44. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413

    Article  Google Scholar 

  45. Greeley J, Rossmeisl J, Hellmann A, Nørskov JK (2007) Zeitschrift für Physikalische Chemie 221:1209

    Article  CAS  Google Scholar 

  46. Xiao L, Zhuang L, Liu Y, Lu J, Abruña HD (2009) J Am Chem Soc 131:602

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Venkat Viswanathan for valuable technical discussions, and acknowledge support from the US Department of Energy, Office of Basic Energy Sciences. This project was carried out as part of the course CHEMENG 444, Quantum Simulations of Molecules and Materials, in the Department of Chemical Engineering at Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens K. Nørskov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterson, A.A., Grabow, L.C., Brennan, T.P. et al. Finite-Size Effects in O and CO Adsorption for the Late Transition Metals. Top Catal 55, 1276–1282 (2012). https://doi.org/10.1007/s11244-012-9908-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9908-x

Keywords

Navigation