Skip to main content
Log in

Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Selective catalytic reduction (SCR) of NOx with ammonia using metal-exchanged molecular sieves with a chabazite structure has recently been commercialized on diesel vehicles. One of the commercialized catalysts, i.e., Cu-SSZ-13, has received much attention for both practical and fundamental studies. For the latter, the particularly well-defined structure of this zeolite is allowing long-standing issues of the catalytically active site for SCR in metal-exchanged zeolites to be addressed. In this review, recent progress is summarized with a focus on two areas. First, the technical significance of Cu-SSZ-13 as compared to other Cu ion-exchanged zeolites (e.g., Cu-ZSM-5 and Cu-beta) is highlighted. Specifically, the much enhanced hydrothermal stability for Cu-SSZ-13 compared to other zeolite catalysts is addressed via performance measurements and catalyst characterization using several techniques. The enhanced stability of Cu-SSZ-13 is rationalized in terms of the unique small pore structure of this zeolite catalyst. Second, the fundamentals of the catalytically active center; i.e., the chemical nature and locations within the SSZ-13 framework are presented with an emphasis on understanding structure–function relationships. For the SCR reaction, traditional kinetic studies are complicated by intra-crystalline diffusion limitations. However, a major side reaction, nonselective ammonia oxidation by oxygen, does not suffer from mass-transfer limitations at relatively low temperatures due to significantly lower reaction rates. This allows structure–function relationships that are rather well understood in terms of Cu ion locations and redox properties. Finally, some aspects of the SCR reaction mechanism are addressed on the basis of in situ spectroscopic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Fridell E, Skoglundh M, Westerberg B, Johansson S, Smedler G (1999) J Catal 183:196

    Article  CAS  Google Scholar 

  2. Epling WS, Campbell LE, Yezerets A, Currier NW, Parks JE II (2004) Catal Rev 46:163

    Article  Google Scholar 

  3. Roy S, Baiker A (2009) Chem Rev 109:4054

    Article  CAS  Google Scholar 

  4. Centi G, Perathoner S (1995) Appl Catal A 132:179

    Article  CAS  Google Scholar 

  5. Pârvulescu VI, Grange P, Delmon B (1998) Catal Today 46:233

    Article  Google Scholar 

  6. Brandenberger S, Krocher O, Tissler A, Althoff R (2008) Catal Rev 50:492

    Article  CAS  Google Scholar 

  7. Iwamoto M, Hamada H (1991) Catal Today 10:57

    Article  CAS  Google Scholar 

  8. Chen HY, Sachtler WMH (1998) Catal Today 42:73

    Article  CAS  Google Scholar 

  9. Chen HY, Sachtler WMH (1998) Catal Lett 50:125

    Article  CAS  Google Scholar 

  10. Long RQ, Yang RT (1999) J Am Chem Soc 121:5595

    Article  CAS  Google Scholar 

  11. US Patent 7,601,662 (2009), US Patent 7,704,475 (2010), US Patent 7,998,423 (2011), US Patent 7,998,443 (2011), US Patent 8,101,147 (2012), US Patent 8,182,777 (2012)

  12. Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF (2010) J Catal 275:187

    Article  CAS  Google Scholar 

  13. Fickel DW, D’Addio E, Lauterbach JA, Lobo RF (2011) Appl Catal B 102:441

    Article  CAS  Google Scholar 

  14. Schmieg SJ, Oh SH, Kim CH, Brown DB, Lee JH, Peden CHF, Kim DH (2012) Catal Today 184:252

    Article  CAS  Google Scholar 

  15. Kwak JH, Tran D, Burton SD, Szanyi J, Lee JH, Peden CHF (2012) J Catal 287:203

    Article  CAS  Google Scholar 

  16. Ye Q, Wang LF, Yang RT (2012) Appl Catal A 427–428:24

    Article  Google Scholar 

  17. Kwak JH, Tran D, Szanyi J, Peden CHF, Lee JH (2012) Catal Lett 142:295

    Article  CAS  Google Scholar 

  18. Gao F, Walker ED, Karp EM, Luo JY, Tonkyn RG, Kwak JH, Szanyi J, Peden CHF (2013) J Catal 300:20

    Article  CAS  Google Scholar 

  19. Fickel DW, Lobo RF (2010) J Phys Chem C 114:1633

    Article  CAS  Google Scholar 

  20. Kwak JH, Zhu HY, Lee JH, Peden CHF, Szanyi J (2012) Chem Comm 48:4758

    Article  CAS  Google Scholar 

  21. Korhonen ST, Fickel DW, Lobo RF, Weckhuysen BM, Beale AM (2011) Chem Commun 47:800

    Article  CAS  Google Scholar 

  22. Deka U, Juhin A, Eilertsen EA, Emerich H, Green MA, Korhonen ST, Weckhuysen BM, Beale AM (2012) J Phys Chem C 116:4809

    Article  CAS  Google Scholar 

  23. Kispersky VF, Kropf AJ, Ribeiro FH, Miller JT (2012) Phys Chem Chem Phys 14:2229

    Article  CAS  Google Scholar 

  24. McEwen JS, Anggara T, Schneider WF, Kispersky VF, Miller JT, Delgass WN, Riberio FH (2012) Catal Today 184:129

    Article  CAS  Google Scholar 

  25. Szanyi J, Kwak JH, Zhu HY, Peden CHF (2013) Phys Chem Chem Phys 15:2368

    Article  CAS  Google Scholar 

  26. Ren LM, Zhu LF, Yang CG, Chen YM, Sun Q, Zhang HY, Li CJ, Nawaz F, Meng XJ, Xiao FS (2011) Chem Commun 47:9789

    Article  CAS  Google Scholar 

  27. Iwasaki M, Shinjoh H (2010) Appl Catal A 390:71

    Article  CAS  Google Scholar 

  28. Iwamoto M, Yahiro H, Tanda K, Mizuno N, Mine Y, Kagawa S (1991) J Phys Chem 95:3727

    Article  CAS  Google Scholar 

  29. Komatsu T, Nunokawa M, Moon IS, Takahara T, Namba S, Yashima T (1994) J Catal 148:427

    Article  CAS  Google Scholar 

  30. Ozkan US, Cai YP, Kumthekar MW (1994) J Catal 149:390

    Article  CAS  Google Scholar 

  31. Centi G, Perathoner S (1996) Catal Today 29:117

    Article  CAS  Google Scholar 

  32. Long RQ, Yang RT (2000) J Catal 194:80

    Article  CAS  Google Scholar 

  33. Chen HY, Sun Q, Wen B, Yeom YH, Weitz E, Sachtler WMH (2004) Catal Today 96:1

    Article  CAS  Google Scholar 

  34. Devadas M, Piazzesi G, Kröcher O, Wokaun A (2006) Appl Catal B 67:187

    Article  CAS  Google Scholar 

  35. Long RQ, Yang RT (2002) J Catal 207:224

    Article  CAS  Google Scholar 

  36. Delahay G, Valade D, Guzman-Vargas A, Coq B (2005) Appl Catal B 55:149

    Article  CAS  Google Scholar 

  37. Rahkamaa-Tolonen K, Maunula T, Lomma M, Huuhtanen M, Keiski RL (2005) Catal Today 100:217

    Article  CAS  Google Scholar 

  38. Yeom YH, Henao J, Li MJ, Sachtler WMH, Weitz E (2005) J Catal 231:181

    Article  CAS  Google Scholar 

  39. Zones SI (1985) US Patent 4,544,538

  40. Broach RW (2010) Zeolite types and structures. In: Kulprathipanja S (ed) Zeolites in Industrial Separation and Catalysis. Wiley-CVH, Weinheim

    Google Scholar 

  41. Kucherov AV, Slinkin AA, Kondratev DA, Bondarenko TN, Rubinstein AM, Minachev KM (1985) Zeolites 5:320

    Article  CAS  Google Scholar 

  42. Kucherov AV, Slinkin AA (1986) Zeolites 6:175

    Article  CAS  Google Scholar 

  43. Sultana A, Nanba T, Sasaki M, Haneda M, Suzuki K, Hamada H (2011) Catal Today 164:495

    Article  CAS  Google Scholar 

  44. Bourgeat-Lami E, Massiani P, Di Renzo F, Espiau P, Fajula F, Des Courieres T (1991) Appl Catal 72:139

    Article  CAS  Google Scholar 

  45. Campbell SM, Bibby DM, Coddington JM, Howe RF, Meinholdz RH (1996) J Catal 161:338

    Article  CAS  Google Scholar 

  46. Park JH, Park HJ, Baik JH, Nam IS, Shin CH, Lee JH, Cho BK, Oh SH (2006) J Catal 240:47

    Article  CAS  Google Scholar 

  47. Kröcher O, Devadas M, Elsener M, Wokaun A, Söger N, Pfeifer M, Demel Y, Mussmann L (2006) Appl Catal B 66:208

    Article  Google Scholar 

  48. Cheng Y, Hoard J, Lambert C, Kwak JH (2008) Peden CHF 136:34

    CAS  Google Scholar 

  49. Huang HY, Long RQ, Yang RT (2002) Appl Catal A 235:241

    Article  CAS  Google Scholar 

  50. Shichi A, Katagi K, Satsuma A, Hattori T (2000) Appl Catal B 24:97

    Article  CAS  Google Scholar 

  51. Chen NY, Degnan TF Jr, Smith CM (1994) Molecular Transport and Reaction in Zeolites. VCH, New York

    Google Scholar 

  52. Ruthven DM, Post MFM (2001) Stud Surf Sci Catal 137:525

    Article  CAS  Google Scholar 

  53. Ruthven DM (2007) Stud Surf Sci Catal 168:737

    Article  Google Scholar 

  54. Yang XF, Wu ZL, Moses-Debusk M, Mullins DR, Mahurin SM, Geiger RA, Kidder M, Narula CK (2012) J Phys Chem C 116:23322

    Article  CAS  Google Scholar 

  55. Zhu HY, Kwak JH, Peden CHF, Szanyi J (2013) Catal Today 205:16

    Article  CAS  Google Scholar 

  56. Elzey S, Mubayi A, Larsen SC, Grassian VH (2008) J Mol Catal A 285:48

    Article  CAS  Google Scholar 

  57. Kamasamudram K, Currier NW, Chen X, Yezerets A (2012) Catal Today 151:212

    Article  Google Scholar 

  58. Metkar PS, Balakotaiah V, Harold MP (2012) Catal Today 184:115

    Article  CAS  Google Scholar 

  59. Centi G, Perathoner S, Biglino P, Giamello E (1995) J Catal 152:75

    Article  CAS  Google Scholar 

  60. Centi G, Perathoner S (1995) J Catal 152:93

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle. As Wayne Goodman’s previous coworkers and friends, the authors greatly appreciate his invaluable guidance and inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles H. F. Peden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, F., Kwak, J.H., Szanyi, J. et al. Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts. Top Catal 56, 1441–1459 (2013). https://doi.org/10.1007/s11244-013-0145-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0145-8

Keywords

Navigation