Skip to main content
Log in

Variations in Reactivity on Different Crystallographic Orientations of Cerium Oxide

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Cerium oxide is a principal component in many heterogeneous catalytic processes. One of its key characteristics is the ability to provide or remove oxygen in chemical reactions. The different crystallographic faces of ceria present significantly different surface structures and compositions that may alter the catalytic reactivity. The structure and composition determine the number of coordination vacancies surrounding surface atoms, the availability of adsorption sites, the spacing between adsorption sites and the ability to remove O from the surface. To investigate the role of surface orientation on reactivity, CeO2 films were grown with two different orientations. CeO2(100) films were grown ex situ by pulsed laser deposition on Nb-doped SrTiO3(100). CeO2(111) films were grown in situ by thermal deposition of Ce metal onto Ru(0001) in an oxygen atmosphere. The chemical reactivity was characterized by the adsorption and decomposition of various molecules such as alcohols, aldehydes and organic acids. In general the CeO2(100) surface was found to be more active, i.e. molecules adsorbed more readily and reacted to form new products, especially on a fully oxidized substrate. However the CeO2(100) surface was less selective with a greater propensity to produce CO, CO2 and water as products. The differences in chemical reactivity are discussed in light of possible structural terminations of the two surfaces. Recently nanocubes and nano-octahedra have been synthesized that display CeO2(100) and CeO2(111) faces, respectively. These nanoparticles enable us to correlate reactions on high surface area model catalysts at atmospheric pressure with model single crystal films in a UHV environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Barteau MA (1993) Site requirements of reactions on oxide surfaces. J Vac Sci Technol A 11(4):2162–2168

    Article  CAS  Google Scholar 

  2. Barteau MA (1996) Organic reactions at well-defined oxide surfaces. Chem Rev 96(4):1413–1430

    Article  CAS  Google Scholar 

  3. Idriss H, Barteau MA (2000) Active sites on oxides: from single crystals to catalysts. Adv Catal 45:261–331

    CAS  Google Scholar 

  4. Vohs JM (2012) Site requirements for the adsorption and reaction of oxygenates on metal oxide surfaces. Chem Rev 113:4136–4163

    Article  Google Scholar 

  5. Badlani M, Wachs IE (2001) Methanol: a “smart” chemical probe molecule. Catal Lett 75(3–4):137–149

    Article  CAS  Google Scholar 

  6. Kulkarni D, Wachs SE (2002) Isopropanol oxidation by pure metal oxide catalysts: number of active surface sites and turnover frequencies. Appl Catal a-Gen 237(1–2):121–137

    Article  CAS  Google Scholar 

  7. Tatibouet JM (1997) Methanol oxidation as a catalytic surface probe. Appl Catal a-Gen 148(2):213–252

    Article  Google Scholar 

  8. Doornkamp C, Ponec V (2000) The universal character of the Mars and Van Krevelen mechanism. J Mol Catal a-Chem 162(1–2):19–32

    Article  CAS  Google Scholar 

  9. Woll C (2007) The chemistry and physics of zinc oxide surfaces. Prog Surf Sci 82(2–3):55–120

    Article  Google Scholar 

  10. Akhter S, Cheng WH, Lui K, Kung HH (1984) Decomposition of methanol, formaldehyde, and formic-acid on nonpolar (10\( \bar{1} \)0), stepped (50\( \bar{5} \)1), and (0001) surfaces of ZnO by temperature-programmed decomposition. J Catal 85(2):437–456

    Article  CAS  Google Scholar 

  11. Cheng WH, Akhter S, Kung HH (1983) Structure sensitivity in methanol decomposition on ZnO single-crystal surfaces. J Catal 82(2):341–350

    Article  CAS  Google Scholar 

  12. Vohs JM, Barteau MA (1986) Conversion of methanol, formaldehyde and formic-acid on the polar faces of zinc-oxide. Surf Sci 176(1–2):91–114

    Article  CAS  Google Scholar 

  13. Vohs JM, Barteau MA (1988) Reaction pathways and intermediates in the decomposition of acetic and propionic acids on the polar surfaces of zinc-oxide. Surf Sci 201(3):481–502

    Article  CAS  Google Scholar 

  14. Grant AW, Jamieson A, Campbell CT (2000) Adsorption of chlorine on ZnO(0001)-Zn and coadsorption with HCOOH. Surf Sci 458(1–3):71–79

    Article  CAS  Google Scholar 

  15. Jones PM, May JA, Reitz JB, Solomon EI (1998) Electron spectroscopic studies of CH3OH chemisorption on Cu2O and ZnO single-crystal surfaces: methoxide bonding and reactivity related to methanol synthesis. J Am Chem Soc 120(7):1506–1516

    Article  CAS  Google Scholar 

  16. Dulub O, Boatner LA, Diebold U (2002) STM study of the geometric and electronic structure of ZnO(0001)-Zn, (000\( \bar{1} \))-O, (10\( \bar{1} \)0), and (11\( \bar{2} \)0) surfaces. Surf Sci 519(3):201–217

    Article  CAS  Google Scholar 

  17. Dulub O, Diebold U, Kresse G (2003) Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn. Phys Rev Lett 90(1):016102

    Article  Google Scholar 

  18. Kresse G, Dulub O, Diebold U (2003) Competing stabilization mechanism for the polar ZnO(0001)-Zn surface. Phys Rev B 68(24):245409

    Article  Google Scholar 

  19. Diebold U, Koplitz LV, Dulub O (2004) Atomic-scale properties of low-index ZnO surfaces. Appl Surf Sci 237(1–4):336–342

    Article  CAS  Google Scholar 

  20. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229

    Article  CAS  Google Scholar 

  21. Firment LE (1982) Thermal faceting of the rutile TiO2(001) surface. Surf Sci 116(2):205–216

    Article  CAS  Google Scholar 

  22. Fukui K, Tero R, Iwasawa Y (2001) Atom-resolved structures of TiO2(001) surface by scanning tunneling microscopy. Jpn J Appl Phys 1 40(6B):4331–4333

    Article  CAS  Google Scholar 

  23. Ariga H, Taniike T, Morikawa H, Tero R, Kondoh H, Iwasawa Y (2008) Lattice-work structure of a TiO2(001) surface studied by STM, core-level spectroscopies and DFT calculations. Chem Phys Lett 454(4–6):350–354

    Article  CAS  Google Scholar 

  24. Kim KS, Barteau MA (1990) Structure and composition requirements for deoxygenation, dehydration, and ketonization reactions of carboxylic-acids on TiO2(001) single-crystal surfaces. J Catal 125(2):353–375

    Article  CAS  Google Scholar 

  25. Kim KS, Barteau MA (1989) Reactions of methanol on TiO2(001) single-crystal surfaces. Surf Sci 223(1–2):13–32

    Article  CAS  Google Scholar 

  26. Diebold U, Lehman J, Mahmoud T, Kuhn M, Leonardelli G, Hebenstreit W, Schmid M, Varga P (1998) Intrinsic defects on a TiO2(011)(1 × 1) surface and their reaction with oxygen: a scanning tunneling microscopy study. Surf Sci 411(1–2):137–153

    Article  CAS  Google Scholar 

  27. Henderson MA, Otero-Tapia S, Castro ME (1999) The chemistry of methanol on the surface: the TiO2(011) influence of vacancies and coadsorbed species. Faraday Discuss 114:313–329

    Article  CAS  Google Scholar 

  28. Bondarchuk O, Kim YK, White JM, Kim J, Kay BD, Dohnalek Z (2007) Surface chemistry of 2-propanol on TiO2(011): low- and high-temperature dehydration, isotope effects, and influence of local surface structure. J Phys Chem C 111(29):11059–11067

    Article  CAS  Google Scholar 

  29. Kim YK, Kay BD, White JM, Dohnalek Z (2007) Alcohol chemistry on rutile TiO2(011): the influence of alkyl substituents on reactivity and selectivity. J Phys Chem C 111(49):18236–18242

    Article  CAS  Google Scholar 

  30. Kim YK, Kay BD, White JM, Dohnalek Z (2008) 2-Propanol dehydration on TiO2(011): the effect of bridge-bonded oxygen vacancy blocking. Surf Sci 602(2):511–516

    Article  CAS  Google Scholar 

  31. Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38(4):439–520

    Article  CAS  Google Scholar 

  32. Trovarelli A (ed) (2002) Catalysis by ceria and related materials. Imperial College Press, London

    Google Scholar 

  33. Jacobs G, Patterson PM, Graham UM, Crawford AC, Davis BH (2005) Low temperature water gas shift: the link between the catalysis of WGS and formic acid decomposition over Pt/ceria. Int J Hydrogen Energy 30(11):1265–1276

    Article  CAS  Google Scholar 

  34. Burch R (2006) Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism. Phys Chem Chem Phys 8(47):5483–5500

    Article  CAS  Google Scholar 

  35. Senanayake SD, Stacchiola D, Evans J, Estrella M, Barrio L, Perez M, Hrbek J, Rodriguez JA (2010) Probing the reaction intermediates for the water-gas shift over inverse CeOx/Au(111) catalysts. J Catal 271(2):392–400

    Article  CAS  Google Scholar 

  36. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301(5635):935–938

    Article  CAS  Google Scholar 

  37. Diagne C, Idriss H, Kiennemann A (2002) Hydrogen production by ethanol reforming over Rh/CeO2–ZrO2 catalysts. Catal Commun 3(12):565–571

    Article  CAS  Google Scholar 

  38. Vivier L, Duprez D (2010) Ceria-based solid catalysts for organic chemistry. Chemsuschem 3(6):654–678

    Article  CAS  Google Scholar 

  39. Yao HC, Yao YFY (1984) Ceria in automotive exhaust catalysts.1. Oxygen Storage. J Catal 86(2):254–265

    Article  CAS  Google Scholar 

  40. Deleitenburg C, Trovarelli A, Zamar F, Maschio S, Dolcetti G, Llorca J (1995) A novel and simple route to catalysts with a high oxygen storage capacity—the direct room-temperature synthesis of CeO2–ZrO2 solid-solutions. J Chem Soc Chem Commun 21:2181–2182

    Article  Google Scholar 

  41. Tasker PW (1979) Stability of ionic-crystal surfaces. J Phys C Solid State 12(22):4977–4984

    Article  CAS  Google Scholar 

  42. Fukui K, Namai Y, Iwasawa Y (2002) Imaging of surface oxygen atoms and their defect structures on CeO2(111) by noncontact atomic force microscopy. Appl Surf Sci 188(3–4):252–256

    Article  CAS  Google Scholar 

  43. Fukui K, Takakusagi S, Tero R, Aizawa M, Namai Y, Iwasawa Y (2003) Dynamic aspects and associated structures of TiO2(110) and CeO2(111) surfaces relevant to oxide catalyses. Phys Chem Chem Phys 5(24):5349–5359

    Article  CAS  Google Scholar 

  44. Namai Y, Fukui KI, Iwasawa Y (2003) Atom-resolved noncontact atomic force microscopic and scanning tunneling microscopic observations of the structure and dynamic behavior of CeO2(111) surfaces. Catal Today 85(2–4):79–91

    Article  CAS  Google Scholar 

  45. Norenberg H, Briggs GAD (1999) Defect formation on CeO2(111) surfaces after annealing studied by STM. Surf Sci 424(2–3):L352–L355

    Article  CAS  Google Scholar 

  46. Gritschneder S, Reichling M (2007) Structural elements of CeO2(111) surfaces. Nanotechnology 18(4):044024

    Article  Google Scholar 

  47. Zhou J, Baddorf AP, Mullins DR, Overbury SH (2008) Growth and characterization of Rh and Pd nanoparticles on oxidized and reduced CeOx(111) thin films by scanning tunneling microscopy. J Phys Chem C 112(25):9336–9345

    Article  CAS  Google Scholar 

  48. Lu JL, Gao HJ, Shaikhutdinov S, Freund HJ (2006) Morphology and defect structure of the CeO2(111) films grown on Ru(0001) as studied by scanning tunneling microscopy. Surf Sci 600(22):5004–5010

    Article  CAS  Google Scholar 

  49. Norenberg H, Briggs GAD (1998) Surface structure of CeO2(111) studied by low current STM and electron diffraction. Surf Sci 402(1–3):734–737

    Article  Google Scholar 

  50. Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G, Rosei R (2005) Electron localization determines defect formation on ceria substrates. Science 309(5735):752–755

    Article  CAS  Google Scholar 

  51. Mullins DR, Radulovic PV, Overbury SH (1999) Ordered cerium oxide thin films grown on Ru(0001) and Ni(111). Surf Sci 429(1–3):186–198

    Article  CAS  Google Scholar 

  52. Conesa JC (1995) Computer modeling of surfaces and defects on cerium dioxide. Surf Sci 339(3):337–352

    Article  CAS  Google Scholar 

  53. Overbury SH, Huntley DR, Mullins DR, Ailey KS, Radulovic PV (1997) Surface studies of model supported catalysts: NO adsorption on Rh/CeO2(001). J Vac Sci Technol A 15(3):1647–1652

    Article  CAS  Google Scholar 

  54. Norenberg H, Harding JH (2001) The surface structure of CeO2(001) single crystals studied by elevated temperature STM. Surf Sci 477(1):17–24

    Article  CAS  Google Scholar 

  55. Herman GS (1999) Surface structure determination of CeO2(001) by angle-resolved mass spectroscopy of recoiled ions. Phys Rev B 59(23):14899–14902

    Article  CAS  Google Scholar 

  56. Molinari M, Parker SC, Sayle DC, Islam MS (2012) Water adsorption and its effect on the stability of low index stoichiometric and reduced surfaces of ceria. J Phys Chem C 116(12):7073–7082

    Article  CAS  Google Scholar 

  57. Sayle TXT, Parker SC, Catlow CRA (1992) Surface oxygen vacancy formation on CeO2 and its role in the oxidation of carbon-monoxide. J Chem Soc Chem Commun 14:977–978

    Article  Google Scholar 

  58. Nolan M, Parker SC, Watson GW (2005) The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf Sci 595(1–3):223–232

    Article  CAS  Google Scholar 

  59. Mullins DR, Albrecht PM, Chen TL, Calaza FC, Biegalski MD, Christen HM, Overbury SH (2012) Water dissociation on CeO2(100) and CeO2(111) thin films. J Phys Chem C 116(36):19419–19428

    Article  CAS  Google Scholar 

  60. Mullins DR, Robbins MD, Zhou J (2006) Adsorption and reaction of methanol on thin-film cerium oxide. Surf Sci 600(7):1547–1558

    Article  CAS  Google Scholar 

  61. Mullins DR, Overbury SH, Huntley DR (1998) Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surf Sci 409(2):307–319

    Article  CAS  Google Scholar 

  62. Mullins DR, Senanayake SD, Chen TL (2010) Adsorption and reaction of C1–C3 alcohols over CeOx(111) thin films. J Phys Chem C 114(40):17112–17119

    Article  CAS  Google Scholar 

  63. Senanayake SD, Mullins DR (2008) Redox pathways for HCOOH decomposition over CeO2 surfaces. J Phys Chem C 112(26):9744–9752

    Article  CAS  Google Scholar 

  64. Ko EI, Benziger JB, Madix RJ (1980) Reactions of methanol on W(100) and W(100)-(5 × 1)C surfaces. J Catal 62(2):264–274

    Article  CAS  Google Scholar 

  65. Hagans PL, Dekoven BM, Womack JL (1989) A laser drilled aperture for use in an ultrahigh-vacuum gas doser. J Vac Sci Technol A 7(6):3375–3377

    Article  CAS  Google Scholar 

  66. Lykhach Y, Johanek V, Aleksandrov HA, Kozlov SM, Happel M, Skala T, St Petkov P, Tsud N, Vayssilov GN, Prince KC, Neyman KM, Matolin V, Libuda J (2012) Water chemistry on model ceria and Pt/Ceria catalysts. J Phys Chem C 116(22):12103–12113

    Article  CAS  Google Scholar 

  67. Matolin V, Matolinova I, Dvorak F, Johanek V, Myslivecek J, Prince KC, Skala T, Stetsovych O, Tsud N, Vaclavu M, Smid B (2012) Water interaction with CeO2(111)/Cu(111) model catalyst surface. Catal Today 181(1):124–132

    Article  CAS  Google Scholar 

  68. Herman GS, Kim YJ, Chambers SA, Peden CHF (1999) Interaction of D2O with CeO2(001) investigated by temperature-programmed desorption and X-ray photoelectron spectroscopy. Langmuir 15(11):3993–3997

    Article  CAS  Google Scholar 

  69. Henderson MA, Perkins CL, Engelhard MH, Thevuthasan S, Peden CHF (2003) Redox properties of water on the oxidized and reduced surfaces of CeO2(111). Surf Sci 526(1–2):1–18

    Article  CAS  Google Scholar 

  70. Henderson MA (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46(1–8):5–308

    Google Scholar 

  71. Kundakovic L, Mullins DR, Overbury SH (2000) Adsorption and reaction of H2O and CO on oxidized and reduced Rh/CeOx(111) surfaces. Surf Sci 457(1–2):51–62

    Article  CAS  Google Scholar 

  72. Watkins MB, Foster AS, Shluger AL (2007) Hydrogen cycle on CeO2(111) surfaces: density functional theory calculations. J Phys Chem C 111(42):15337–15341

    Article  CAS  Google Scholar 

  73. Fronzi M, Piccinin S, Delley B, Traversa E, Stampfl C (2009) Water adsorption on the stoichiometric and reduced CeO2(111) surface: a first-principles investigation. Phys Chem Chem Phys 11(40):9188–9199

    Article  CAS  Google Scholar 

  74. Marrocchelli D, Yildiz B (2012) First-principles assessment of H2S and H2O reaction mechanisms and the subsequent hydrogen absorption on the CeO2(111) surface. J Phys Chem C 116(3):2411–2424

    Article  CAS  Google Scholar 

  75. Ferrizz RM, Egami T, Vohs JM (2000) Temperature programmed desorption study of the reaction of C2H4 and CO on Rh supported on alpha-Al2O3(0001), YSZ(100) and CeO2 thin films. Surf Sci 465(1–2):127–137

    Article  CAS  Google Scholar 

  76. Beste A, Mullins DR, Overbury SH, Harrison RJ (2008) Adsorption and dissociation of methanol on the fully oxidized and partially reduced (111) cerium oxide surface: dependence on the configuration of the cerium 4f electrons. Surf Sci 602(1):162–175

    Article  CAS  Google Scholar 

  77. Ferrizz RM, Wong GS, Egami T, Vohs JM (2001) Structure sensitivity of the reaction of methanol on ceria. Langmuir 17(8):2464–2470

    Article  CAS  Google Scholar 

  78. Siokou A, Nix RM (1999) Interaction of methanol with well-defined ceria surfaces: reflection/absorption infrared spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption study. J Phys Chem B 103(33):6984–6997

    Article  CAS  Google Scholar 

  79. Mei D, Deskins NA, Dupuis M, Ge Q (2007) Methanol adsorption on the clean CeO2(111) surface: a density functional theory study. J Phys Chem C 111(28):10514–10522

    Article  CAS  Google Scholar 

  80. Namai Y, Fukui K, Iwasawa Y (2004) The dynamic behaviour of CH3OH and NO2 adsorbed on CeO2(111) studied by noncontact atomic force microscopy. Nanotechnology 15(2):S49–S54

    Article  CAS  Google Scholar 

  81. Matolin V, Libra J, Skoda M, Tsud N, Prince KC, Skala T (2009) Methanol adsorption on a CeO2(111)/Cu(111) thin film model catalyst. Surf Sci 603(8):1087–1092

    Article  CAS  Google Scholar 

  82. Stubenrauch J, Brosha E, Vohs JM (1996) Reaction of carboxylic acids on CeO2(111) and CeO2(100). Catal Today 28(4):431–441

    Article  CAS  Google Scholar 

  83. Gordon WO, Xu Y, Mullins DR, Overbury SH (2009) Temperature evolution of structure and bonding of formic acid and formate on fully oxidized and highly reduced CeO2(111). Phys Chem Chem Phys 11(47):11171–11183

    Article  CAS  Google Scholar 

  84. Chen TL, Mullins DR (2011) Adsorption and reaction of acetaldehyde over CeOx(111) thin films. J Phys Chem C 115(8):3385–3392

    Article  CAS  Google Scholar 

  85. Calaza FC, Xu Y, Mullins DR, Overbury SH (2012) Oxygen vacancy-assisted coupling and enolization of acetaldehyde on CeO2(111). J Am Chem Soc 134(43):18034–18045

    Article  CAS  Google Scholar 

  86. Mullins DR, Zhang K (2001) Interaction between NO and C2H4 on Rh-loaded CeOx(111). J Phys Chem B 105(7):1374–1380

    Article  CAS  Google Scholar 

  87. Zhou KB, Wang X, Sun XM, Peng Q, Li YD (2005) Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J Catal 229(1):206–212

    Article  CAS  Google Scholar 

  88. Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH (2005) Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B 109(51):24380–24385

    Article  CAS  Google Scholar 

  89. Yan L, Yu RB, Chen J, Xing XR (2008) Template-free hydrothermal synthesis of CeO2 nano-octahedrons and nanorods: investigation of the morpholog evolution. Cryst Growth Des 8(5):1474–1477

    Article  CAS  Google Scholar 

  90. Aneggi E, Llorca J, Boaro M, Trovarelli A (2005) Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders. J Catal 234(1):88–95

    Article  CAS  Google Scholar 

  91. Wu ZL, Li MJ, Howe J, Meyer HM, Overbury SH (2010) Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 26(21):16595–16606

    Article  CAS  Google Scholar 

  92. Florea I, Freral-Martin C, Majimel J, Ihiawakrim D, Hirlimann C (2013) Three-dimensional tomographic analyses of CeO2 nanoparticles. Cryst Growth Des 13(3):1110–1121. doi:10.1021/cg301445h

    Article  CAS  Google Scholar 

  93. Ta N, Liu JY, Chenna S, Crozier PA, Li Y, Chen AL, Shen WJ (2012) Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. J Am Chem Soc 134(51):20585–20588

    Article  CAS  Google Scholar 

  94. Wu ZL, Li MJ, Mullins DR, Overbury SH (2012) Probing the surface sites of CeO2 nanocrystals with well-defined surface planes via methanol adsorption and desorption. Acs Catal 2(11):2224–2234

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

Disclaimer

This manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free licence to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Mullins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullins, D.R., Albrecht, P.M. & Calaza, F. Variations in Reactivity on Different Crystallographic Orientations of Cerium Oxide. Top Catal 56, 1345–1362 (2013). https://doi.org/10.1007/s11244-013-0146-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0146-7

Keywords

Navigation