Skip to main content
Log in

Dependences of the Oxygen Reduction Reaction Activity of Pd–Co/C and Pd–Ni/C Alloy Electrocatalysts on the Nanoparticle Size and Lattice Constant

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Carbon-supported Pd-based binary alloy electrocatalysts (Pd–Co and Pd–Ni) with different particle sizes for polymer electrolyte fuel cells were prepared by a NaBH4 reduction method and investigated to examine effects of the size and lattice constant of the Pd alloy nanoparticles on the oxygen reduction reaction (ORR) activity. The particle size and lattice constant were controlled in the wide ranges 4.2–12.1 and 0.3802–0.3948 nm, respectively by heating the catalysts in specific atmospheres. The alloy structures were characterized by X-ray diffraction, transmission electron microscopy and X-ray absorption fine structure. The electrochemical tests of the Pd–Co/C and Pd–Ni/C catalysts were performed by cyclic voltammetry and rotating disk electrode in 0.1 M HClO4. Nearly linear relationship between the lattice constant and nanoparticle size was observed with the Pd–Co and Pd–Ni nanoparticles. The nanoparticle sizes and lattice constants of the Pd–Co/C and Pd–Ni/C electrocatalysts, which influence the Pd d-band center, showed positive and inverse relations with the ORR specific activities, respectively. The mass activities of the Pd–Co/C and Pd–Ni/C electrocatalysts showed an increasing trend with the lattice expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dresselhaus MS, Thomas IL (2001) Nature 414(6861):332–337

    Article  CAS  Google Scholar 

  2. Carrette L, Friedrich KA, Stimming U (2001) Fuel Cells 1(1):5–39

    Article  CAS  Google Scholar 

  3. Aricò AS, Srinivasan S, Antonucci V (2001) Fuel Cells 1(2):133–161

    Article  Google Scholar 

  4. Steele BCH, Heinzel A (2001) Nature 414:345–352

    Article  CAS  Google Scholar 

  5. Vielstich W, Lamm A, Gasteiger HA (2003) Handbook of fuel cells: fundamentals, technology, applications. Wiley, Chichester

    Google Scholar 

  6. Weber AZ, Newman J (2004) Chem Rev 104(10):4679–4726

    Article  CAS  Google Scholar 

  7. Wang C-Y (2004) Chem Rev 104(10):4727–4766

    Article  CAS  Google Scholar 

  8. Jacobson MZ, Colella WG, Golden DM (2005) Science 308(5730):1901–1905

    Article  CAS  Google Scholar 

  9. Shao Z, Haile SM, Ahn J, Ronney PD, Zhan Z, Barnett SA (2005) Nature 435(7043):795–798

    Article  CAS  Google Scholar 

  10. Srinivasan S (2006) Fuel cells. Springer, New York

    Google Scholar 

  11. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Angew Chem Int Ed 45(18):2897–2901

    Article  CAS  Google Scholar 

  12. Huang Y-H, Dass RI, Xing Z-L, Goodenough JB (2006) Science 312(5771):254–257

    Article  CAS  Google Scholar 

  13. Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) J Phys Chem B 108:10955–10964

    Article  CAS  Google Scholar 

  14. Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN (2001) Fuel Cells 1(2):105–116

    Article  Google Scholar 

  15. Xiao L, Zhuang L, Liu Y, Lu J, Abruña HcD (2008) J Am Chem Soc 131(2):602–608

    Article  CAS  Google Scholar 

  16. Shao M (2011) J Power Sources 196(5):2433–2444

    Article  CAS  Google Scholar 

  17. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K-i, Iwashita N (2007) Chem Rev 107(10):3904–3951

    Article  CAS  Google Scholar 

  18. Schmittinger W, Vahidi A (2008) J Power Sources 180(1):1–14

    Article  CAS  Google Scholar 

  19. Debe MK (2012) Nature 486(7401):43–51

    Article  CAS  Google Scholar 

  20. Gottesfeld S, Zawodzinski T (2008) Advances in electrochemical science and engineering, vol 5. Wiley, Weinheim

    Google Scholar 

  21. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK (2009) Nat Chem 1(7):552–556

    Article  CAS  Google Scholar 

  22. Wu J, Zhang J, Peng Z, Yang S, Wagner FT, Yang H (2010) J Am Chem Soc 132(14):4984–4985

    Article  CAS  Google Scholar 

  23. Nilekar AU, Xu Y, Zhang J, Vukmirovic MB, Sasaki K, Adzic RR, Mavrikakis M (2007) Top Catal 46(3–4):276–284

    Article  CAS  Google Scholar 

  24. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Appl Catal B 56(1–2):9–35

    Article  CAS  Google Scholar 

  25. Mukerjee S, Srinivasan S (1993) J Electroanal Chem 357(1–2):201–224

    Article  CAS  Google Scholar 

  26. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Science 315(5811):493–497

    Article  CAS  Google Scholar 

  27. Wang C, Chi M, Li D, van der Vliet D, Wang G, Lin Q, Mitchell JF, More KL, Markovic NM, Stamenkovic VR (2011) ACS Catal 1(10):1355–1359

    Article  CAS  Google Scholar 

  28. Salvatore Aricò A, Stassi A, Gatto I, Monforte G, Passalacqua E, Antonucci V (2010) J Phys Chem C 114(37):15823–15836

    Article  CAS  Google Scholar 

  29. Chen S, Gasteiger HA, Hayakawa K, Tada T, Shao-Horn Y (2010) J Electrochem Soc 157(1):A82–A97

    Article  CAS  Google Scholar 

  30. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) J Phys Chem B 106(16):4181–4191

    Article  CAS  Google Scholar 

  31. Matsutani K, Tada T, Hayakawa K (2010) Platinum Metals Rev 54(4):223–232

    Article  CAS  Google Scholar 

  32. Yu P, Pemberton M, Plasse P (2005) J Power Sources 144(1):11–20

    Article  CAS  Google Scholar 

  33. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2002) Electrochim Acta 47(22–23):3787–3798

    Article  CAS  Google Scholar 

  34. Koh S, Strasser P (2007) J Am Chem Soc 129(42):12624–12625

    Article  CAS  Google Scholar 

  35. Toda T, Igarashi H, Uchida H, Watanabe M (1999) J Electrochem Soc 146(10):3750–3756

    Article  CAS  Google Scholar 

  36. Wakabayashi N, Takeichi M, Uchida H, Watanabe M (2005) J Phys Chem B 109(12):5836–5841

    Article  CAS  Google Scholar 

  37. Santiago EI, Varanda LC, Villullas HM (2007) J Phys Chem C 111(7):3146–3151

    Article  CAS  Google Scholar 

  38. Leontyev IN, Guterman VE, Pakhomova EB, Timoshenko PE, Guterman AV, Zakharchenko IN, Petin GP, Dkhil B (2010) J Alloys Compd 500(2):241–246

    Article  CAS  Google Scholar 

  39. Loukrakpam R, Luo J, He T, Chen Y, Xu Z, Njoki PN, Wanjala BN, Fang B, Mott D, Yin J, Klar J, Powell B, Zhong C-J (2011) J Phys Chem C 115(5):1682–1694

    Article  CAS  Google Scholar 

  40. Oezaslan M, Strasser P (2011) J Power Sources 196(12):5240–5249

    Article  CAS  Google Scholar 

  41. Mani P, Srivastava R, Strasser P (2011) J Power Sources 196(2):666–673

    Article  CAS  Google Scholar 

  42. Rabis A, Rodriguez P, Schmidt TJ (2012) ACS Catal 2(5):864–890

    Article  CAS  Google Scholar 

  43. Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) J Phys Chem B 109(48):22701–22704

    Article  CAS  Google Scholar 

  44. Yu C, Koh S, Leisch JE, Toney MF, Strasser P (2009) Faraday Discuss 140:283–296

    Article  Google Scholar 

  45. Chen Y, Liang Z, Yang F, Liu Y, Chen S (2011) J Phys Chem C 115(49):24073–24079

    Article  CAS  Google Scholar 

  46. Yang H (2011) Angew Chem Int Ed 50(12):2674–2676

    Article  CAS  Google Scholar 

  47. Wang C, Chi M, Li D, Strmcnik D, van der Vliet D, Wang G, Komanicky V, Chang K-C, Paulikas AP, Tripkovic D, Pearson J, More KL, Markovic NM, Stamenkovic VR (2011) J Am Chem Soc 133(36):14396–14403

    Article  CAS  Google Scholar 

  48. Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Top Catal 46(3–4):249–262

    Article  CAS  Google Scholar 

  49. Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR (2010) Angew Chem Int Ed 49(46):8602–8607

    Article  CAS  Google Scholar 

  50. Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Angew Chem Int Ed 44(14):2132–2135

    Article  CAS  Google Scholar 

  51. Zhang J, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR (2005) J Am Chem Soc 127(36):12480–12481

    Article  CAS  Google Scholar 

  52. Liu L, Samjeske G, Nagamatsu S-i, Sekizawa O, Nagasawa K, Takao S, Imaizumi Y, Yamamoto T, Uruga T, Iwasawa Y (2012) J Phys Chem C 116(44):23453–23464

    Article  CAS  Google Scholar 

  53. Nagamatsu S-I, Arai T, Yamamoto M, Ohkura T, Oyanagi H, Ishizaka T, Kawanami H, Uruga T, Tada M, Iwasawa Y (2013) J Phys Chem C 117(25):13094–13107

    Google Scholar 

  54. Kim J, Momma T, Osaka T (2009) J Power Sources 189(2):909–915

    Article  CAS  Google Scholar 

  55. Ramossanchez G, Yeemadeira H, Solorzaferia O (2008) Int J Hydrogen Energy 33(13):3596–3600

    Article  CAS  Google Scholar 

  56. Shao M-H, Sasaki K, Adzic RR (2006) J Am Chem Soc 128:3526–3527

    Article  CAS  Google Scholar 

  57. Suo Y, Zhuang L, Lu J (2007) Angew Chem Int Ed 119(16):2920–2922

    Article  Google Scholar 

  58. Shao MH, Huang T, Liu P, Zhang J, Sasaki K, Vukmirovic MB, Adzic RR (2006) Langmuir 22:10409–10415

    Article  CAS  Google Scholar 

  59. Song S, Wang Y, Tsiakaras P, Shen PK (2008) Appl Catal B 78(3–4):381–387

    Article  CAS  Google Scholar 

  60. Shao M, Liu P, Zhang J, Adzic R (2007) J Phys Chem B 111:6772–6775

    Article  CAS  Google Scholar 

  61. Shao M, Peles A, Shoemaker K (2011) Nano Lett 11(9):3714–3719

    Article  CAS  Google Scholar 

  62. Chen S, Sheng W, Yabuuchi N, Ferreira PJ, Allard LF, Shao-Horn Y (2008) J Phys Chem C 113(3):1109–1125

    Article  CAS  Google Scholar 

  63. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) J Phys Chem 99(13):4577–4589

    Article  CAS  Google Scholar 

  64. Xu Y, Ruban AV, Mavrikakis M (2004) J Am Chem Soc 126(14):4717–4725

    Article  CAS  Google Scholar 

  65. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Phys Rev Lett 93(15):156801

    Article  CAS  Google Scholar 

  66. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) J Chem Phys 120(21):10240–10246

    Article  CAS  Google Scholar 

  67. Jia Q, Segre CU, Ramaker D, Caldwell K, Trahan M, Mukerjee S (2013) Electrochim Acta 88:604–613

    Article  CAS  Google Scholar 

  68. Mavrikakis M, Hammer B, Nørskov JK (1998) Phys Rev Lett 81(13):2819–2822

    Article  Google Scholar 

  69. Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) J Am Chem Soc 128(27):8813–8819

    Article  CAS  Google Scholar 

  70. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Nat Mater 6(3):241–247

    Article  CAS  Google Scholar 

  71. Mun BS, Watanabe M, Rossi M, Stamenkovic V, Markovic NM, Ross PN (2005) J Chem Phys 123(20):204717

    Article  CAS  Google Scholar 

  72. Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis—calculations and concepts. In: Bruce C, Gates HK (eds) Advances in catalysis, vol 45. Academic Press, San Diego, pp 71–129

    Google Scholar 

  73. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J. Phys Chem B 108(46):17886–17892

    Article  CAS  Google Scholar 

  74. Wakisaka M, Suzuki H, Mitsui S, Uchida H, Watanabe M (2008) J Phys Chem C 112(7):2750–2755

    Article  CAS  Google Scholar 

  75. Savadogo O, Lee K, Oishi K, Mitsushima S, Kamiya N, Ota KI (2004) Electrochem Commun 6(2):105–109

    Article  CAS  Google Scholar 

  76. Mukerjee S, McBreen J (1998) J Electroanal Chem 448:163–171

    Article  CAS  Google Scholar 

  77. Maillard F, Pronkin S, Savinova ER (2009) Fuel cell catalysis. Wiley, Hoboken

    Google Scholar 

  78. Maillard F, Pronkin S, Savinova ER (2010) Influence of size on the electrocatalytic activities of supported metal nanoparticles in fuel cells related reactions. In: Vielstich W, Lamm A, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells. Wiley, Hoboken

  79. Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) J Phys Chem B 109:14433–14440

    Article  CAS  Google Scholar 

  80. Greeley J, Rossmeisl J, Hellmann A, Norskov JK (2007) Z Phys Chem 221(9–10):1209–1220

    Article  CAS  Google Scholar 

  81. Wang C, Vliet Dvd, Chang K-C, You H, Strmcnik D, Schlueter JA, Markovic NM, Stamenkovic VR (2009) J Phys Chem C 113:19365–19368

    Article  CAS  Google Scholar 

  82. Wang C, Wang G, van der Vliet D, Chang KC, Markovic NM, Stamenkovic VR (2010) Phys Chem Chem Phys 12(26):6933–6939

    Article  CAS  Google Scholar 

  83. Wang JX, Inada H, Wu L, Zhu Y, Choi Y, Liu P, Zhou W-P, Adzic RR (2009) J Am Chem Soc 131(47):17298–17302

    Article  CAS  Google Scholar 

  84. Li X, Huang Q, Zou Z, Xia B, Yang H (2008) Electrochim Acta 53(22):6662–6667

    Article  CAS  Google Scholar 

  85. Bezerra CWB, Zhang L, Liu H, Lee K, Marques ALB, Marques EP, Wang H, Zhang J (2007) J Power Sources 173(2):891–908

    Article  CAS  Google Scholar 

  86. Wang W, Zheng D, Du C, Zou Z, Zhang X, Xia B, Yang H, Akins DL (2007) J Power Sources 167(2):243–249

    Article  CAS  Google Scholar 

  87. Zhao J, Sarkar A, Manthiram A (2010) Electrochim Acta 55(5):1756–1765

    Article  CAS  Google Scholar 

  88. Morozan A, Jousselme B, Palacin S (2011) Energy Environ Sci 4(4):1238

    Article  CAS  Google Scholar 

  89. Huang Q, Yang H, Tang Y, Lu T, Akins DL (2006) Electrochem Commun 8(8):1220–1224

    Article  CAS  Google Scholar 

  90. Han K, Moon Y, Han O, Hwang K, Kim I, Kim H (2007) Electrochem Commun 9(2):317–324

    Article  CAS  Google Scholar 

  91. Correia AN, Mascaro LH, Machado SAS, Avaca LA (1997) Electrochim Acta 42:493–495

    Article  CAS  Google Scholar 

  92. Wei Y-C, Liu C-W, Wang K-W (2011) Chem Commun 47(43):11927–11929

    Article  CAS  Google Scholar 

  93. Yin A-X, Min X-Q, Zhu W, Liu W-C, Zhang Y-W, Yan C-H (2012) Chemistry 18(3):777–782

    Article  CAS  Google Scholar 

  94. Sarkar A, Murugan AV, Manthiram A (2008) J Phys Chem C 112(31):12037–12043

    Article  CAS  Google Scholar 

  95. Hara M, Linke U, Wandlowski T (2007) Electrochim Acta 52(18):5733–5748

    Article  CAS  Google Scholar 

  96. Álvarez GF, Mamlouk M, Scott K (2011) Int J Electrochem 2011:1–12

    Article  CAS  Google Scholar 

  97. Lee K, Savadogo O, Ishihara A, Mitsushima S, Kamiya N, Ota K-I (2006) J Electrochem Soc 153(1):A20

    Article  CAS  Google Scholar 

  98. Zhang J (2008) PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. Springer, New York

    Book  Google Scholar 

  99. Stamenkovic′ V, Schmidt TJ, Ross PN, Markovic NM (2002) J Phys Chem B 106:11970–11979

    Article  CAS  Google Scholar 

  100. Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR (1992) J Electrochem Soc 139(9):2530–2537

    Article  CAS  Google Scholar 

  101. M-K Min, Cho J, Cho K, Kim H (2000) Electrochim Acta 45:4211–4217

    Article  Google Scholar 

  102. Ruban AV, Skriver HL, Nørskov JK (1999) Phys Rev B 59(24):15990–16000

    Article  Google Scholar 

  103. Christensen A, Ruban AV, Stoltze P, Jacobsen KW, Skriver HL, Nørskov JK, Besenbacher F (1997) Phys Rev B 56(10):5822–5834

    Article  CAS  Google Scholar 

  104. Batirev IG, Leiro JA (1995) J Electron Spectrosc Relat Phenom 71(1):79–86

    Article  CAS  Google Scholar 

  105. Tada M, Murata S, Asakoka T, Hiroshima K, Okumura K, Tanida H, Uruga T, Nakanishi H, Matsumoto S-I, Inada Y, Nomura M, Iwasawa Y (2007) Angew Chem Int Ed 46(23):4310–4315

    Article  CAS  Google Scholar 

  106. Tada M, Ishiguro N, Uruga T, Tanida H, Terada Y, Nagamatsu S-I, Iwasawa Y, Ohkoshi S-I (2011) Phys Chem Chem Phys 13(33):14910–14913

    Article  CAS  Google Scholar 

  107. Uemura Y, Inada Y, Bando KK, Sasaki T, Kamiuchi N, Eguchi K, Yagishita A, Nomura M, Tada M, Iwasawa Y (2011) Phys Chem Chem Phys 13(35):15833–15844

    Article  CAS  Google Scholar 

  108. Ishiguro N, Saida T, Uruga T, Nagamatsu S-I, Sekizawa O, Nitta K, Yamamoto T, Ohkoshi S-I, Iwasawa Y, Yamamoto T, Ohkoshi S-i, Iwasawa Y, Yokoyama T, Tada M (2012) ACS Catal 2(7):1319–1330

    Article  CAS  Google Scholar 

  109. Saida T, Sekizawa O, Ishiguro N, Hoshino M, Uesugi K, Uruga T, Ohkoshi S-I, Yokoyama T, Tada M (2012) Angew Chem Int Ed 51(41):10311–10314

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by New Energy and Industrial Technology Development Organization (NEDO). XAFS measurements were performed at BL01B1 station with the approval of SPring-8 (Nos. 2011B1597, 2011B1040 and 2012A1026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Iwasawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Samjeske, G., Nagamatsu, Si. et al. Dependences of the Oxygen Reduction Reaction Activity of Pd–Co/C and Pd–Ni/C Alloy Electrocatalysts on the Nanoparticle Size and Lattice Constant. Top Catal 57, 595–606 (2014). https://doi.org/10.1007/s11244-013-0216-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0216-x

Keywords

Navigation