Skip to main content

Advertisement

Log in

Oxidation of Vanillin with Supported Gold Nanoparticles

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The selective oxidation of vanillin to vanillic acid was achieved using gold nanoparticles supported on alumina and titania. Selectivities up to 99 % at conversions over 90 % were obtained with pressurized oxygen as green oxidant in alkaline aqueous media. Our studies showed that the addition of at least 2 equivalents of strong Brönsted base had a crucial role in suppressing vanillin degradation and achieving high selectivity and conversion. The highest activities involved turn-over frequency values up to 1300 h−1 and were achieved using alumina supported catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chatterjee C, Pong F, Sen A (2015) Chemical conversion pathways for carbohydrates. Green Chem 17:40–71

    Article  CAS  Google Scholar 

  2. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  Google Scholar 

  3. Fache M, Boutevin B, Caillol S (2016) Vanillin production from lignin and Its use as a renewable chemical. ACS Sustain Chem Eng 4:35–46

    Article  CAS  Google Scholar 

  4. Hocking MB (1997) Vanillin: synthetic flavoring from spent sulfite liquor. J Chem Educ 74:1055

    Article  CAS  Google Scholar 

  5. Sachdev D, Dubey A, Mishra BG, Kannan S (2008) Environmentally benign liquid phase oxidation of vanillin over copper containing ternary hydrotalcites. Catal Commun 9:391–394

    Article  CAS  Google Scholar 

  6. Fache M, Darroman E, Besse V, Auvergne R, Caillol S, Boutevin B (2014) Vanillin, a promising biobased building-block for monomer synthesis. Green Chem 16:1987–1998

    Article  CAS  Google Scholar 

  7. Gitzinger M, Kemmer C, Fluri DA, Daoud El-Baba M, Weber W, Fussenegger M (2011) The food additive vanillic acid controls transgene expression in mammalian cells and mice. Nucl Acids Res 40(5):e37. doi:10.1093/nar/gkr1251

    Article  Google Scholar 

  8. Fargues C, Mathias Á, Silva J, Rodrigues A (1996) Kinetics of vanillin oxidation. Chem Eng Technol 19:127–136

    Article  CAS  Google Scholar 

  9. Lindgren BO, Nilsson T (1973) Preparation of carboxylic acids from aldehydes (including hydroxylated benzaldehydes) by oxidation with chlorite. Acta Chem Scand 27:888–890

    Article  CAS  Google Scholar 

  10. Jose T, Nandibewoor S, Tuwar S (2006) Kinetics and mechanism of the oxidation of vanillin by hexacyanoferrate(III) in aqueous alkaline medium. J Solut Chem 35:51–62

    Article  CAS  Google Scholar 

  11. Hiremath DC, Kiran TS, Nandibewoor ST (2007) Oxidation of vanillin by diperiodatocuprate(III) in aqueous alkaline medium: a kinetic and mechanistic study by stopped flow technique. Int J Chem Kinet 39:236–244

    Article  CAS  Google Scholar 

  12. Davis SE, Ide MS, Davis RJ (2013) Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chem 15:17–45

    Article  CAS  Google Scholar 

  13. Freakley S, He Q, Kiely C, Hutchings G (2015) Gold catalysis: a reflection on where we are now. Catal Lett 145:71–79

    Article  CAS  Google Scholar 

  14. Della Pina C, Falletta E, Rossi M (2012) Update on selective oxidation using gold. Chem Soc Rev 41:350–369

    Article  CAS  Google Scholar 

  15. Rautiainen S, Simakova O, Guo H, Leino A-R, Kordás K, Murzin D, Leskelä M, Repo T (2014) Solvent controlled catalysis: synthesis of aldehyde, acid or ester by selective oxidation of benzyl alcohol with gold nanoparticles on alumina. Appl Catal A 485:202–206

    Article  CAS  Google Scholar 

  16. Liu H, Liu Y, Li Y, Tang Z, Jiang H (2010) Metal–organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols. J Phys Chem C 114:13362–13369

    Article  CAS  Google Scholar 

  17. Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au–Pd/TiO2 catalysts. Science 311:362–365

    Article  CAS  Google Scholar 

  18. Rautiainen S, Lehtinen P, Chen J, Vehkamäki M, Niemelä K, Leskelä M, Repo T (2015) Selective oxidation of uronic acids into aldaric acids over gold catalyst. RSC Adv 5:19502–19507

    Article  CAS  Google Scholar 

  19. Zanella R, Giorgio S, Henry CR, Louis C (2002) Alternative methods for the preparation of gold nanoparticles supported on TiO2. J Phys Chem B 106:7634–7642

    Article  CAS  Google Scholar 

  20. Xu A, Chai Y, Nohmi T, Hei TK (2009) Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part Fibre Toxicol 6:1–13

    Article  CAS  Google Scholar 

  21. Delidovich IV, Moroz BL, Taran OP, Gromov NV, Pyrjaev PA, Prosvirin IP, Bukhtiyarov VI, Parmon VN (2013) Aerobic selective oxidation of glucose to gluconate catalyzed by Au/Al2O3 and Au/C: impact of the mass-transfer processes on the overall kinetics. Chem Eng J 223:921–931

    Article  CAS  Google Scholar 

  22. Fargues C, Mathias Á, Rodrigues A (1996) Kinetics of vanillin production from kraft lignin oxidation. Ind Eng Chem Res 35:28–36

    Article  CAS  Google Scholar 

  23. Zope BN, Hibbitts DD, Neurock M, Davis RJ (2010) Reactivity of the gold/water interface during selective oxidation catalysis. Science 330:74–78

    Article  CAS  Google Scholar 

  24. Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J Am Chem Soc 127:9374–9375

    Article  CAS  Google Scholar 

  25. Tsunoyama H, Tsukuda T, Sakurai H (2007) Synthetic application of PVP-stabilized Au nanocluster catalyst to aerobic oxidation of alcohols in aqueous solution under ambient conditions. Chem Lett 36:212–213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by University of Helsinki Doctoral Programme in Chemistry and Molecular Sciences (CHEMS). The authors would like to thank Electron Microscopy Unit of the Institute of Biotechnology in University of Helsinki for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Repo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rautiainen, S., Chen, J., Vehkamäki, M. et al. Oxidation of Vanillin with Supported Gold Nanoparticles. Top Catal 59, 1138–1142 (2016). https://doi.org/10.1007/s11244-016-0633-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0633-8

Keywords

Navigation