Skip to main content
Log in

Determining Cu–Speciation in the Cu–CHA Zeolite Catalyst: The Potential of Multivariate Curve Resolution Analysis of In Situ XAS Data

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The Cu–CHA zeolite today represents an attractive platform to design catalysts for deNOx applications by NH3-assisted selective catalytic reduction (NH3–SCR) and for the low-temperature selective oxidation of methane to methanol (MTM). Accessing a quantitative understanding of Cu–speciation in this material is a key step to unveil structure–performance relationships for these high-impact processes. Herein, we select Cu–CHA as a case study to demonstrate the potential of chemometric approaches, such as multivariate curve resolution (MCR) applied in combination with principal component analysis (PCA). We employ these methods to assist the interpretation of X-ray absorption spectroscopy (XAS) experiments in the near-edge (XANES) region, determining the spectroscopic signatures and concentration profiles of the pure Cu–species formed. We pinpoint the composition impact on the material reducibility and highlight Cu–speciation–productivity relationships for the MTM process. Furthermore, we report novel insights on the formation of O2-derived species in Cu–CHA, obtained from MCR analysis of high energy resolution fluorescence detected (HERFD) XANES data collected during thermal treatment of Cu–CHA in both He and O2 gas flow. Multivariate analysis, in combination with the superior energy resolution adopted, allows us to identify an additional Cu(II) species. This component, different from the previously characterized Z[Cu(II)OH] moiety, is only formed at significant concentrations in O2 and it is envisaged to play an important role in the MTM conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beale AM, Gao F, Lezcano-Gonzalez I, Peden CH, Szanyi J (2015) Chem Soc Rev 44:7371–7405

    Article  CAS  PubMed  Google Scholar 

  2. Deka U, Lezcano-Gonzalez I, Weckhuysen BM, Beale AM (2013) ACS Catal 3:413–427

    Article  CAS  Google Scholar 

  3. Janssens TV, Falsig H, Lundegaard LF, Vennestrøm PN, Rasmussen SB, Moses PG, Giordanino F, Borfecchia E, Lomachenko KA, Lamberti C (2015) ACS Catal 5:2832–2845

    Article  CAS  Google Scholar 

  4. Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) J Am Chem Soc 127:1394–1395

    Article  CAS  PubMed  Google Scholar 

  5. Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EI (2009) Proc Natl Acad Sci USA 106:18908–18913

    Article  CAS  PubMed  Google Scholar 

  6. Alayon EMC, Nachtegaal M, Bodi A, van Bokhoven JA (2014) ACS Catal 4:16–22

    Article  CAS  Google Scholar 

  7. Grundner S, Markovits MA, Li G, Tromp M, Pidko EA, Hensen EJ, Jentys A, Sanchez-Sanchez M, Lercher JA (2015) Nat Commun 6:7546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tomkins P, Ranocchiari M, van Bokhoven JA (2017) Acc Chem Res 50:418–425

    Article  CAS  PubMed  Google Scholar 

  9. Sushkevich VL, Palagin D, Ranocchiari M, van Bokhoven JA (2017) Science 356:523–527

    Article  CAS  PubMed  Google Scholar 

  10. Narsimhan K, Iyoki K, Dinh K, Román-Leshkov Y (2016) ACS Cent Sci 2:424–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kulkarni AR, Zhao Z-J, Siahrostami S, Nørskov JK, Studt F (2016) ACS Catal 6:6531–6536

    Article  CAS  Google Scholar 

  12. Wulfers MJ, Teketel S, Ipek B, Lobo RF (2015) Chem Commun 51:4447–4450

    Article  CAS  Google Scholar 

  13. Saha D, Grappe HA, Chakraborty A, Orkoulas G (2016) Chem Rev 116:11436–11499

    Article  CAS  PubMed  Google Scholar 

  14. Lunsford JH (2000) Catal Today 63:165–174

    Article  CAS  Google Scholar 

  15. Fickel DW, Lobo RF (2009) J Phys Chem C 114:1633–1640

    Article  CAS  Google Scholar 

  16. Deka U, Juhin A, Eilertsen EA, Emerich H, Green MA, Korhonen ST, Weckhuysen BM, Beale AM (2012) J Phys Chem C 116:4809–4818

    Article  CAS  Google Scholar 

  17. Korhonen ST, Fickel DW, Lobo RF, Weckhuysen BM, Beale AM (2011) Chem Commun 47:800–802

    Article  CAS  Google Scholar 

  18. Borfecchia E, Lomachenko K, Giordanino F, Falsig H, Beato P, Soldatov A, Bordiga S, Lamberti C (2015) Chem Sci 6:548–563

    Article  CAS  PubMed  Google Scholar 

  19. Andersen CW, Borfecchia E, Bremholm M, Jørgensen M, Vennestrøm P, Lamberti C, Lundegaard L, Iversen BB (2017) Angew Chem Int Ed 56:10367–10372

    Article  CAS  Google Scholar 

  20. Brandenberger S, Kröcher O, Tissler A, Althoff R (2008) Catal Rev 50:492–531

    Article  CAS  Google Scholar 

  21. Kwak JH, Zhu HY, Lee JH, Peden CHF, Szanyi J (2012) Chem Commun 48:4758–4760

    Article  CAS  Google Scholar 

  22. Gao F, Washton NM, Wang Y, Kollár M, Szanyi J, Peden CH (2015) J Catal 331:25–38

    Article  CAS  Google Scholar 

  23. Paolucci C, Parekh AA, Khurana I, Di Iorio JR, Li H, Albarracin Caballero JD, Shih AJ, Anggara T, Delgass WN, Miller JT (2016) J Am Chem Soc 138:6028–6048

    Article  CAS  PubMed  Google Scholar 

  24. Martini A, Borfecchia E, Lomachenko KA, Pankin IA, Negri C, Berlier G, Beato P, Falsig H, Bordiga S, Lamberti C (2017) Chem Sci 8:6836–6851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Palomino GT, Fisicaro P, Bordiga S, Zecchina A, Giamello E, Lamberti C (2000) J Phys Chem B 104:4064–4073

    Article  CAS  Google Scholar 

  26. Llabrés i Xamena FX, Fisicaro P, Berlier G, Zecchina A, Palomino GT, Prestipino C, Bordiga S, Giamello E, Lamberti C (2003) J Phys Chem B 107:7036–7044

    Article  CAS  Google Scholar 

  27. Pappas DK, Borfecchia E, Dyballa M, Pankin IA, Lomachenko KA, Martini A, Signorile M, Teketel S, Arstad B, Berlier G, Lamberti C, Bordiga S, Olsbye U, Lillerud KP, Svelle S, Beato P (2017) J Am Chem Soc 139:14961–14975

    Article  CAS  PubMed  Google Scholar 

  28. Ipek B, Wulfers MJ, Kim H, Göltl F, Hermans I, Smith JP, Booksh KS, Brown CM, Lobo RF (2017) ACS Catal 7:4291–4303

    Article  CAS  Google Scholar 

  29. Giordanino F, Borfecchia E, Lomachenko KA, Lazzarini A, Agostini G, Gallo E, Soldatov AV, Beato P, Bordiga S, Lamberti C (2014) J Phys Chem Lett 5:1552–1559

    Article  CAS  PubMed  Google Scholar 

  30. Lezcano-Gonzalez I, Deka U, Arstad B, Van Yperen-De Deyne A, Hemelsoet K, Waroquier M, Van Speybroeck V, Weckhuysen BM, Beale AM (2014) Phys Chem Chem Phys 16:1639–1650

    Article  CAS  PubMed  Google Scholar 

  31. Lomachenko KA, Borfecchia E, Negri C, Berlier G, Lamberti C, Beato P, Falsig H, Bordiga S (2016) J Am Chem Soc 138:12025–12028

    Article  CAS  PubMed  Google Scholar 

  32. Gao F, Mei D, Wang Y, Szanyi J, Peden CHF (2017) J Am Chem Soc 139:4935–4942

    Article  CAS  PubMed  Google Scholar 

  33. Paolucci C, Khurana I, Parekh AA, Li S, Shih AJ, Li H, Di Iorio JR, Albarracin-Caballero JD, Yezerets A, Miller JT, Delgass WN, Ribeiro FH, Schneider WF, Gounder R (2017) Science 357:898–903

    Article  CAS  PubMed  Google Scholar 

  34. Rehr JJ, Ankudinov AL (2005) Coord Chem Rev 249:131–140

    Article  CAS  Google Scholar 

  35. Bordiga S, Groppo E, Agostini G, van Bokhoven JA, Lamberti C (2013) Chem Rev 113:1736–1850

    Article  CAS  PubMed  Google Scholar 

  36. Guda SA, Guda AA, Soldatov MA, Lomachenko KA, Bugaev AL, Lamberti C, Gawelda W, Bressler C, Smolentsev G, Soldatov AV, Joly Y (2015) J Chem Theory Comput 11:4512–4521

    Article  CAS  PubMed  Google Scholar 

  37. Joly I, Grenier S (2016) Theory of X-ray absorption near edge structure. In: van Bokhoven JA, Lamberti C (eds) X-ray absorption and X-ray emission spectroscopy: theory and application. Wiley, Chichester, pp 73–98

    Chapter  Google Scholar 

  38. Van Bokhoven JA, Lamberti C (2016) X-ray absorption and X-ray emission spectroscopy: theory and applications, vol 1. Wiley, Chichester

    Book  Google Scholar 

  39. Garino C, Borfecchia E, Gobetto R, Salassa L, van Bokhoven JA, Lamberti C (2014) Coord Chem Rev 277–278:130–186

    Article  CAS  Google Scholar 

  40. Glatzel P, Bergmann U (2005) Coord Chem Rev 249:65–95

    Article  CAS  Google Scholar 

  41. Singh J, Lamberti C, van Bokhoven JA (2010) Chem Soc Rev 39:4754–4766

    Article  CAS  PubMed  Google Scholar 

  42. Sano M, Komorita S, Yamatera H (1992) Inorg Chem 31:459–463

    Article  CAS  Google Scholar 

  43. Kau LS, Spirasolomon DJ, Pennerhahn JE, Hodgson KO, Solomon EI (1987) J Am Chem Soc 109:6433–6442

    Article  CAS  Google Scholar 

  44. Malinowski ER (2002) Factor analysis in chemistry. Wiley, New York

    Google Scholar 

  45. Tauler R (1995) Chemom Intell Lab Syst 30:133–146

    Article  CAS  Google Scholar 

  46. de Juan A, Tauler R (2003) Anal Chim Acta 500:195–210

    Article  CAS  Google Scholar 

  47. Elbergali A, Nygren J, Kubista M (1999) Anal Chim Acta 379:143–158

    Article  CAS  Google Scholar 

  48. Jaumot J, Gargallo R, de Juan A, Tauler R (2005) Chemom Intell Lab Syst 76:101–110

    Article  CAS  Google Scholar 

  49. Jaumot J, de Juan A, Tauler R (2015) Chemom Intell Lab Syst 140:1–12

    Article  CAS  Google Scholar 

  50. Conti P, Zamponi S, Giorgetti M, Berrettoni M, Smyrl WH (2010) Anal Chem 82:3629–3635

    Article  CAS  PubMed  Google Scholar 

  51. Caetano BL, Briois V, Pulcinelli SH, Meneau F, Santilli CV (2017) J Phys Chem C 121:886–895

    Article  CAS  Google Scholar 

  52. Carvalho HWP, Pulcinelli SH, Santilli CV, Leroux F, Meneau F, Briois V (2013) Chem Mater 25:2855–2867

    Article  CAS  Google Scholar 

  53. Cassinelli WH, Martins L, Passos AR, Pulcinelli SH, Santilli CV, Rochet A, Briois V (2014) Catal Today 229:114–122

    Article  CAS  Google Scholar 

  54. Voronov A, Urakawa A, Beek W, Tsakoumis NE, Emerich H, Rønning M (2014) Anal Chim Acta 840:20–27

    Article  CAS  PubMed  Google Scholar 

  55. Hong JP, Marceau E, Khodakov AY, Gaberova L, Griboval-Constant A, Girardon JS, La Fontaine C, Briois V (2015) ACS Catal 5:1273–1282

    Article  CAS  Google Scholar 

  56. Rochet A, Baubet B, Moizan V, Devers E, Hugon A, Pichon C, Payen E, Briois V (2017) J Phys Chem C 121:18544–18556

    Article  CAS  Google Scholar 

  57. Pascarelli S, Mathon O, Mairs T, Kantor I, Agostini G, Strohm C, Pasternak S, Perrin F, Berruyer G, Chappelet P, Clavel C, Dominguez MC (2016) J Synchrotron Radiat 23:353–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ruckebusch C (2016) Resolving spectral mixtures: with applications from ultrafast time-resolved spectroscopy to super-resolution imaging, vol 30. Elsevier, Amsterdam

    Google Scholar 

  59. Ruckebusch C, Blanchet L (2013) Anal Chim Acta 765:28–36

    Article  CAS  PubMed  Google Scholar 

  60. Mendieta J, Díaz-Cruz M, Esteban M, Tauler R (1998) Biophys J 74:2876–2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bro R, De Jong S (1997) J Chemom 11:393–401

    Article  CAS  Google Scholar 

  62. Bellet D, Gorges B, Dallery A, Bernard P, Pereiro E, Baruchel J (2003) J Appl Crystallogr 36:366–367

    Article  CAS  Google Scholar 

  63. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541

    Article  CAS  PubMed  Google Scholar 

  64. Godiksen A, Stappen FN, Vennestrom PNR, Giordanino F, Rasmussen SB, Lundegaard LF, Mossin S (2014) J Phys Chem C 118:23126–23138

    Article  CAS  Google Scholar 

  65. Gao F, Walter ED, Kollar M, Wang YL, Szanyi J, Peden CHF (2014) J Catal 319:1–14

    Article  CAS  Google Scholar 

  66. Godiksen A, Vennestrom P, Rasmussen S, Mossin S (2017) Top Catal 60:13–29

    Article  CAS  Google Scholar 

  67. Godiksen A, Isaksen OL, Rasmussen SB, Vennestrom PNR, Mossin S (2018) ChemCatChem 10:366–370

    Article  CAS  Google Scholar 

  68. McEwen J-S, Anggara T, Schneider W, Kispersky V, Miller J, Delgass W, Ribeiro F (2012) Catal Today 184:129–144

    Article  CAS  Google Scholar 

  69. Giordanino F, Vennestrom PNR, Lundegaard LF, Stappen FN, Mossin SL, Beato P, Bordiga S, Lamberti C (2013) Dalton Trans 42:12741–12761

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

EB acknowledges Innovation Fund Denmark (Industrial postdoc n. 5190-00018B). We are deeply indebted with many colleagues from different institutions working in the context of a fruitful and stimulating collaboration on Cu–zeolite catalysts, for insightful discussions and support on XAS data collection and analysis, chemometric techniques, chemistry and catalysis of the studied materials. In particular we thank C. Lamberti, S. Bordiga, G. Berlier, C. Negri, and M. Vincenti from University of Turin; I. A. Pankin from University of Rostov-on Don and University of Turin; P. Beato, H. Falsig, S. Teketel from Haldor Topsøe A/S; S. Svelle, D. K. Pappas, M. M. Dyballa from University of Oslo. A special acknowledgment goes to the staff of The European Synchrotron for the competent support during data collection on the BM23 (M. Monte Caballero) and ID26 beamlines (R. Baran); we also acknowledge K. A. Lomachenko (scientist at BM23/ID24) for the continuous scientific and technical support on the whole research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Borfecchia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 501 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martini, A., Alladio, E. & Borfecchia, E. Determining Cu–Speciation in the Cu–CHA Zeolite Catalyst: The Potential of Multivariate Curve Resolution Analysis of In Situ XAS Data. Top Catal 61, 1396–1407 (2018). https://doi.org/10.1007/s11244-018-1036-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1036-9

Keywords

Navigation