Skip to main content

Advertisement

Log in

In Situ Time-Resolved Redox Dynamics of Pd Catalysts Under Oscillating A/F Conditions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The redox dynamics of Pd catalysts under lean/rich perturbation conditions was analyzed by in situ time-resolved reflectance spectroscopy. The real-time redox of Pd/Al2O3 was monitored using the reflectance at 650 nm at every second under simulated exhausts (CO–C3H6–NO–O2), which were switched between air-to-fuel ratio of 14.1 (rich) and 15.0 (lean). Compared to the fast oxidation of metallic Pd (Pd0) upon rich-to-lean switching, the reduction of Pd oxide (Pd2+) upon reverse (lean-to-rich) switch started after a long induction period and proceeded slowly. Because the similar result was also observed for a Pd metal foil, the unequal redox rates under the lean/rich perturbation condition is characteristic of Pd. The temperature dependence of the redox rate demonstrated that the activation energy for the reduction of Pd oxide is greater than that of the Pd oxidation. The faster oxidation rate of Pd surface is considered as the primary reason for steep decrease of NO reduction efficiency in a slightly lean A/F region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heck RM, Farrauto RJ, Gulati ST (1995) Catalytic air pollution control: commercial technology. Wiley, Hoboken

    Google Scholar 

  2. Farrauto RJ, Heck RM (1995) Catalytic converters: state of the art and perspectives. Catal Today 51:351–360

    Article  Google Scholar 

  3. Shelef M, McCabe RW (2000) Twentyfive years after introduction pf automotive catalysts: what next? Catal Today 62:35–50

    Article  CAS  Google Scholar 

  4. Gandhi HS, Graham GW, McCabe RW (2003) Automotive exhaust catalysis. J Catal 216(1–2):433–442. https://doi.org/10.1016/S0021-9517(02)00067-2

    Article  CAS  Google Scholar 

  5. Taylor KC (1984) Automotive catalytic converters, vol 5. Catalysis science and technology. Springer, Berlin

    Book  Google Scholar 

  6. Shimizu K-i, Oda T, Sakamoto Y, Kamiya Y, Yoshida H, Satsuma A (2012) Quantitative Determination of average rhodium oxidation state by a simple XANES analysis. Appl Catal B 111–112(1):509–514. https://doi.org/10.1016/j.apcatb.2011.11.002

    Article  CAS  Google Scholar 

  7. Ferri D, Newton MA, Di Michiel M, Chiarello GL, Yoon S, Lu Y, Andrieux J (2014) Revealing the dynamic structure of complex solid catalysts using modulated excitation X-ray diffraction. Angew Chem Int Ed 53(34):8890–8894. https://doi.org/10.1002/anie.201403094

    Article  CAS  Google Scholar 

  8. Matsumura D, Okajima Y, Nishihata Y, Mizuki J, Taniguchi M, Uenishi M, Tanaka H (2009) Dynamic structural change of Pd particles on LaFeO3 under redox atmosphere and CO/NO catalytic reaction studied by dispersive XAFS. J Phys. https://doi.org/10.1088/1742-6596/190/1/012154

    Article  Google Scholar 

  9. Weckhuysen BM (2002) Snapshots of a working catalyst: possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. Chem Commun 2:97–110

    Article  CAS  Google Scholar 

  10. Schoonheydt RA (2010) UV-VIS-NIR scpectroscopy and microscopy of heterogeneous catalysts. Chem Soc Rev 39:5051–5066

    Article  CAS  PubMed  Google Scholar 

  11. Lin Q, Shimizu K-i, Satsuma A (2012) Kinetic analysis of reduction process of supported Rh/Al2O3 catalysts by time resolved in-situ UV–Vis spectroscopy. Appl Catal A 419–420:142–147. https://doi.org/10.1016/j.apcata.2012.01.021

    Article  CAS  Google Scholar 

  12. Lin Q, Shimizu K-i, Satsuma A (2009) Redox property of tungstated-zirconia analyzed by time resolved in situ UV–Vis spectroscopy. Appl Catal A 365(1):55–61. https://doi.org/10.1016/j.apcata.2009.05.051

    Article  CAS  Google Scholar 

  13. Buwono HP, Yamamoto M, Kakei R, Hinokuma S, Yoshida H, Machida M (2017) Redox dynamics of Rh supported on ZrP2O7 and ZrO2 analyzed by time-resolved in situ optical spectroscopy. J Phys Chem C 121(33):17982–17989. https://doi.org/10.1021/acs.jpcc.7b05260

    Article  CAS  Google Scholar 

  14. Nur ASM, Funada E, Kiritoshi S, Matsumoto A, Kakei R, Hinokuma S, Yoshida H, Machida M (2018) Phase-dependent formation of coherent interface structure between PtO2 and TiO2 and its impact on thermal decomposition behavior. J Phys Chem C 122(1):662–669. https://doi.org/10.1021/acs.jpcc.7b10858

    Article  CAS  Google Scholar 

  15. Crozier PA, Datye AK (2000) Direct observation of reduction of PdO to Pd metal by in situ electron microscopy. In: Corma A, Melo FV, Mendioroz S, Fierro JLG (eds) Studies in surface science and catalysis. Elsevier, Amsterdam pp 3119–3124. https://doi.org/10.1016/S0167-2991(00)80501-7

    Chapter  Google Scholar 

  16. Datye AK, Bravo J, Nelson TR, Atanasova P, Lyubovsky M, Pfefferle L (2000) Catalyst microstructure and methane oxidation reactivity during the Pd ↔ PdO transformation on alumina supports. Appl Catal A 198(1):179–196. https://doi.org/10.1016/S0926-860X(99)00512-8

    Article  CAS  Google Scholar 

  17. Kan HH, Weaver JF (2009) Mechanism of PdO thin film formation during the oxidation of Pd(111). Surf Sci 603(17):2671–2682. https://doi.org/10.1016/j.susc.2009.06.023

    Article  CAS  Google Scholar 

  18. Rastogi L, Arunachalam J (2012) Microwave-assisted green synthesis of small gold nanoparticles using aqueous garlic (Allium sativum) extract: their application as antibiotic carriers. Int J Green Nanotechnol 4(2):163–173. https://doi.org/10.1080/19430892.2012.676926

    Article  CAS  Google Scholar 

  19. Wittanadecha W, Laosiripojana N, Ketcong A, Ningnuek N, Praserthdam P, Monnier JR, Assabumrungrat S (2014) Preparation of Au/C catalysts using microwave-assisted and ultrasonic-assisted methods for acetylene hydrochlorination. Appl Catal A 475:292–296. https://doi.org/10.1016/j.apcata.2014.01.043

    Article  CAS  Google Scholar 

  20. Tanaka H, Hirotoshi F, Takahashi I (1995) Excellent oxygen storage capacity of perovskite-Pd three-way catalysts. SAE Paper:950256

  21. Xiong Y, Chen J, Wiley B, Xia Y, Yin Y, Li Z-Y (2005) Size-Dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process. Nano Lett 5(7):1237–1242. https://doi.org/10.1021/nl0508826

    Article  CAS  PubMed  Google Scholar 

  22. Leong KH, Chu HY, Ibrahim S, Saravanan P (2015) Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity. Beilstein J Nanotech 6:428–437. https://doi.org/10.3762/bjnano.6.43

    Article  CAS  Google Scholar 

  23. Szekely J, Evans JW, Sohn HW (1976) Gas–solid reactions. Academic Press, Inc., New York, p 10

    Google Scholar 

  24. Ksepko E, Babinski P, Evdou A, Nalbandian L (2016) Studies on the redox reaction kinetics of selected, naturally occurring oxygen carrier. J Therm Anal Calorimetry 124(1):137–150. https://doi.org/10.1007/s10973-015-5107-x

    Article  CAS  Google Scholar 

  25. Velasco-Sarria FJ, Forero CR, Arango E, Adánez J (2018) Reduction and oxidation kinetics of Fe–Mn-based minerals from southwestern colombia for chemical looping combustion. Energy Fuels 32(2):1923–1933. https://doi.org/10.1021/acs.energyfuels.7b02188

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work was supported by the MEXT program, “Elements Strategy Initiative to Form Core Research Center” (since 2012), which is run by MEXT (Ministry of Education Culture, Sports, Science and Technology), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Machida.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 310 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, H., Kakei, R., Fujiwara, A. et al. In Situ Time-Resolved Redox Dynamics of Pd Catalysts Under Oscillating A/F Conditions. Top Catal 62, 345–350 (2019). https://doi.org/10.1007/s11244-018-1100-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1100-5

Keywords

Navigation