Skip to main content
Log in

CO2 Reforming of CH4 on Mesoporous Alumina-Supported Cobalt Catalyst: Optimization of Lanthana Promoter Loading

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The impact of La2O3 promoter loading on alumina-supported cobalt catalysts was investigated in terms of physicochemical properties and catalytic performance for CO2 reforming of methane (CRM) at stoichiometric CH4/CO2 ratio and 1023 K. Both Co3O4 (with crystal size: 5.2–8.4 nm) and La2O3 nanoparticles were finely dispersed on support surface. The promotional La2O3 effect could noticeably increase CH4 and CO2 conversions to 29.3% and 17.3%, correspondingly due to improved basic site concentration and decreasing crystallite size of active metal in association with promoter addition. 5%La loading was an optimal promoter content for reactant conversions as well as yield of H2 and CO. 5%La-10%Co/Al2O3 also exhibited the highest resistance to carbon deposition owing to the basic nature, redox feature and oxygen vacancy of La2O3 dopant. Notably, the H2/CO ratio obtained within 0.84–0.98 is preferable for Fischer-Tropsch reaction in downstream to yield liquid hydrocarbon fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9

Similar content being viewed by others

References

  1. Davis BH (2001) Fischer-Tropsch synthesis: current mechanism and futuristic needs. Fuel Process Technol 71(1–3):157–166. https://doi.org/10.1016/S0378-3820(01)00144-8

    Article  CAS  Google Scholar 

  2. Liu B, Li W, Xu Y, Lin Q, Jiang F, Liu X (2019) Insight into the intrinsic active site for selective production of light olefins in Cobalt-catalyzed Fischer-Tropsch synthesis. ACS Catal 9(8):7073–7089. https://doi.org/10.1021/acscatal.9b00352

    Article  CAS  Google Scholar 

  3. Sharma D, Rodriguez DG, Gleeson MA, Weststrate CJ, Gleeson MA, Fredriksson HOA, Niemantsverdriet JW (2020) Mechanistic insight into carbon-carbon bond formation on cobalt under simulated Fischer-Tropsch synthesis conditions. Nat Commun 11(1):1–10. https://doi.org/10.1038/s41467-020-14613-5

    Article  CAS  Google Scholar 

  4. Santos GRS, Basha OM, Wang R, Ashkanani H, Morsi B (2020) Techno-economic assessment of Fischer-Tropsch synthesis and direct methane-to-methanol processes in modular GTL reactors. Catal Today. In press. https://doi.org/10.1016/j.cattod.2020.07.012

  5. Liu Y, Kamata H, Ohara H, Izumi Y, Ong DSW, Chang J, Poh CK, Chen L, Borgna A (2020) Low-olefin production process based on Fischer-Tropsch synthesis: process synthesis, optimization, and techno-economic analysis. Ind Eng Chem Res 59(18):8728–8739. https://doi.org/10.1021/acs.iecr.0c00542

    Article  CAS  Google Scholar 

  6. Lee JK, Lee IB, Han J (2019) Techno-economic analysis of methanol production from joint feedstock of coke oven gas and basic oxygen furnace gas from steel-making. J Ind Eng Chem 75(25):77–85. https://doi.org/10.1016/j.jiec.2019.02.019

    Article  CAS  Google Scholar 

  7. Zagorščak R, An N, Palange R, Green M, Krishnan M, Thomas HR (2019) Underground coal gasification–A numerical approach to study the formation of syngas and its reactive transport in the surrounding strata. Fuel 253(1):349–360. https://doi.org/10.1016/j.fuel.2019.04.164

    Article  CAS  Google Scholar 

  8. Nakyai T, Saebea D (2019) Exergoeconomic comparison of syngas production from biomass, coal, and natural gas for dimethyl ether synthesis in single-step and two-step processes. J Clean Prod 241:118334. https://doi.org/10.1016/j.jclepro.2019.118334

    Article  CAS  Google Scholar 

  9. Gao N, Cheng M, Quan C, Zheng Y (2020) Syngas production via combined dry and steam reforming of methane over Ni-Ce/ZSM-5 catalyst. Fuel 273(1):117702. https://doi.org/10.1016/j.fuel.2020.117702

    Article  CAS  Google Scholar 

  10. Elbadawi AAH, Ge L, Zhang J, Zhuang L, Liu S, Tan X, Wang S, Zhu Z (2020) Partial oxidation of methane to syngas in catalytic membrane reactor: Role of catalyst oxygen vacancies. Chem Eng J 392:123739. https://doi.org/10.1016/j.cej.2019.123739

    Article  CAS  Google Scholar 

  11. Ma C, Zou C, Zhao J, Shi R, Li X, He J, Zhang X (2019) Pyrolysis characteristics of low-rank coal under a co-containing atmosphere and properties of the prepared coal chars. Energ Fuel 33(7):6098–6112. https://doi.org/10.1021/acs.energyfuels.9b00860

    Article  CAS  Google Scholar 

  12. Yang Q, Li X, Yang Q, Huang W, Yu P, Zhang D (2019) Opportunities for CO2 utilization in coal to green fuel process: Optimal design and performance evaluation. ACS Sustain Chem Eng 8(3):1329–1342. https://doi.org/10.1021/acssuschemeng.9b02979

    Article  CAS  Google Scholar 

  13. Zhou L, Martirez JMP, Finzel J, Zhang C, Swearer DF, Tian S, Robatjazi H, Lou M, Dong L, Henderson L, Christopher P, Carter EA, Nordlander P, Halas NJ (2020) Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat Energy 5(1):61–70. https://doi.org/10.1038/s41560-019-0517-9

    Article  CAS  Google Scholar 

  14. Safavinia B, Wang Y, Jiang C, Roman C, Darapaneni P, Larriviere J, Cullen DA, Dooley KM, Dorman JA (2020) Enhancing CexZr1–x O2 activity for methane dry reforming using subsurface Ni dopants. ACS Catal 10(7):4070–4079. https://doi.org/10.1021/acscatal.0c00203

    Article  CAS  Google Scholar 

  15. Li L, Chen J, Zhang Q, Yang Z, Sun Y, Zou G (2020) Methane dry reforming over activated carbon supported Ni-catalysts prepared by solid phase synthesis. J Clean Prod 274:122256. https://doi.org/10.1016/j.jclepro.2020.122256

    Article  CAS  Google Scholar 

  16. Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN (2018) Catalyst design for dry reforming of methane: Analysis review. Renew Sustain Energy Rev 82(3):2570–2585. https://doi.org/10.1016/j.rser.2017.09.076

    Article  CAS  Google Scholar 

  17. Pakhare D, Spivey J (2014) A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev 43(22):7813–7837. https://doi.org/10.1039/C3CS60395D

    Article  CAS  PubMed  Google Scholar 

  18. Park JH, Yeo S, Kang TJ, Heo I, Lee KY, Chang TS (2018) Enhanced stability of Co catalysts supported on phosphorus-modified Al2O3 for dry reforming of CH4. Fuel 212(15):77–87. https://doi.org/10.1016/j.fuel.2017.09.090

    Article  CAS  Google Scholar 

  19. Paksoy AI, Caglayan BS, Aksoylu AE (2015) A study on characterization and methane dry reforming performance of Co-Ce/ZrO2 catalyst. Appl Catal B 168:164–174. https://doi.org/10.1016/j.apcatb.2014.12.038

    Article  CAS  Google Scholar 

  20. Horváth É, Baán K, Varga E, Oszkó A, Vágó Á, Törő M, Erdőhelyi A (2017) Dry reforming of CH4 on Co/Al2O3 catalysts reduced at different temperatures. Catal Today 281(2):233–240. https://doi.org/10.1016/j.cattod.2016.04.007

    Article  CAS  Google Scholar 

  21. Zeng S, Zhang L, Zhang X, Wang Y, Pan H, Su H (2012) Modification effect of natural mixed rare earths on Co/γ-Al2O3 catalysts for CH4/CO2 reforming to synthesis gas. Int J Hydrog Energy 37(13):9994–10001. https://doi.org/10.1016/j.ijhydene.2012.04.014

    Article  CAS  Google Scholar 

  22. Shafiqah MNN, Tran HN, Nguyen TD, Pham TTP, Abdullah B, Lam SS, Nguyen-Tri P, Kumar R, Nanda S, Vo DVN (2020) Ethanol CO2 reforming on La2O3 and CeO2-promoted Cu/Al2O3 catalysts for enhanced hydrogen production. Int J Hydrog Energy 45(36):18398–18410. https://doi.org/10.1016/j.ijhydene.2019.10.024

    Article  CAS  Google Scholar 

  23. Tran NT, Pham TLM, Nguyen TD, Van Cuong N, Siang TJ, Phuong PTT, Jalil AA, Truong QD, Abidin SZ, Hagos FY, Nanda S, Vo DVN (2020) Improvements in hydrogen production from methane dry reforming on filament-shaped mesoporous alumina-supported cobalt nanocatalyst. Int J Hydrog Energy. In press. https://doi.org/10.1016/j.ijhydene.2020.06.142

  24. JCPDS powder diffraction file. Swarthmore PA (2000) International Centre for Diffraction Data

  25. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982. https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  26. Fayaz F, Nga NTA, Pham TLM, Danh HT, Abdullah B, Setiabudi HD, Vo DVN (2018) Hydrogen production from ethanol dry reforming over lanthania-promoted Co/Al2O3 catalyst. IIUM Eng J 19(1): 24-33. https://doi.org/https://doi.org/10.31436/iiumej.v19i1.813

  27. Bahari MB, Phuc NHH, Alenazey F, Vu KB, Ainirazali N, Vo DVN (2017) Catalytic performance of La-Ni/Al2O3 catalyst for CO2 reforming of ethanol. Catal Today 291:67–75. https://doi.org/10.1016/j.cattod.2017.02.019

    Article  CAS  Google Scholar 

  28. Tran NT, Van Le Q, Van Cuong N, Nguyen TD, Phuc NHH, Phuong PTT, Monir MU, Aziz AA, Truong QD, Abidin SZ, Nanda S, Vo DVN (2020) La-doped cobalt supported on mesoporous alumina catalysts for improved methane dry reforming and coke mitigation. J Energy Inst 93(4):1571–1580. https://doi.org/10.1016/j.joei.2020.01.019

    Article  Google Scholar 

  29. Durán-Guevara MB, Ortiz-Landeros J, Pfeiffer H, Espitia-Cabrera MI, Contreras-García ME (2015) Potassium-based sorbents using mesostructured γ-alumina supports for low temperature CO2 capture. Ceram Int 41(2):3036–3044. https://doi.org/10.1016/j.ceramint.2014.10.140

    Article  CAS  Google Scholar 

  30. Siang TJ, Pham TLM, Cuong NV, Phuong PTT, Phuc NHH, Truong QD, Vo DVN (2018) Combined steam and CO2 reforming of methane for syngas production over carbon-resistant boron-promoted Ni/SBA-15 catalysts. Micropor Mesopor Mat 262:122–132. https://doi.org/10.1016/j.micromeso.2017.11.028

    Article  CAS  Google Scholar 

  31. Feng Y, Zhang H, Fang L, Li W, Wang Y (2016) Novel three-dimensional flower-like porous Al2O3 nanosheets anchoring hollow NiO nanoparticles for high-efficiency lithium ion batteries. J Mater Chem 4(29):11507–11515. https://doi.org/10.1039/C6TA04323B

    Article  CAS  Google Scholar 

  32. Mohammadi SZ, Beitollahi H, Allahabadi H, Rohani T (2019) Disposable electrochemical sensor based on modified screen printed electrode for sensitive cabergoline quantification. J Electroanal Chem 847:113223. https://doi.org/10.1016/j.jelechem.2019.113223

    Article  CAS  Google Scholar 

  33. Fayaz F, Bach LG, Bahari MB, Nguyen TD, Vu KB, Kanthasamy R, Samart C, Nguyen-Huy C, Vo DVN (2019) Stability evaluation of ethanol dry reforming on Lanthania-doped cobalt-based catalysts for hydrogen-rich syngas generation. Int J Energy Res 43(1):405–416. https://doi.org/10.1002/er.4274

    Article  CAS  Google Scholar 

  34. Osorio-Vargas P, Campos CH, Navarro RM, Fierro JLG, Reyes P (2015) Rh/Al2O3-La2O3 catalysts promoted with CeO2 for ethanol steam reforming reaction. J Mol Catal A Chem 407:169–181. https://doi.org/10.1016/j.molcata.2015.06.031

    Article  CAS  Google Scholar 

  35. Campos CH, Osorio-Vargas P, Flores-González N, Fierro JLG, Reyes P (2016) Effect of Ni loading on lanthanide (La and Ce) promoted γ-Al2O3 catalysts applied to ethanol steam reforming. Catal Lett 146(2):433–441. https://doi.org/10.1007/s10562-015-1649-6

    Article  CAS  Google Scholar 

  36. Kondrat SA, Smith PJ, Lu L, Bartley JK, Taylor SH, Spencer MS, Kelly GJ, Park CW, Kiely CJ, Hutchings GJ (2018) Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO2 anti-solvent precipitation. Catal Today 317:12–20. https://doi.org/10.1016/j.cattod.2018.03.046

    Article  CAS  Google Scholar 

  37. Milt VG, Ulla MA, Lombardo EA (2000) Cobalt-containing catalysts for the high-temperature combustion of methane. Catal Lett 65(1–3):67–73. https://doi.org/10.1023/A:1019061103878

    Article  CAS  Google Scholar 

  38. San José-Alonso D, Illán-Gómez MJ, Román-Martínez MC (2013) Low metal content Co and Ni alumina supported catalysts for the CO2 reforming of methane. Int J Hydrog Energy 38(5):2230–2239. https://doi.org/10.1016/j.ijhydene.2012.11.080

    Article  CAS  Google Scholar 

  39. Bahari MB, Setiabudi HD, Nguyen TD, Phuong PTT, Truong QD, Jalil AA, Ainirazali N, Vo DVN (2020) Insight into the influence of rare-earth promoter (CeO2, La2O3, Y2O3, and Sm2O3) addition toward methane dry reforming over Co/mesoporous alumina catalysts. Chem Eng Sci 228:115967. https://doi.org/10.1016/j.ces.2020.115967

    Article  CAS  Google Scholar 

  40. Christensen KO, Chen D, Lødeng R, Holmen A (2006) Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming. Appl Catal A: Gen 314:9–22. https://doi.org/10.1016/j.apcata.2006.07.028

    Article  CAS  Google Scholar 

  41. Jean-Marie A, Griboval-Constant A, Khodakov AY, Monflier E, Diehl F (2011) β-Cyclodextrin for design of alumina supported cobalt catalysts efficient in Fischer-Tropsch synthesis. Chem Commun 47(38):10767–10769. https://doi.org/10.1039/C1CC13800F

    Article  CAS  Google Scholar 

  42. Jabbour K, El Hassan N, Casale S, Estephane J, El Zakhem H (2014) Promotional effect of Ru on the activity and stability of Co/SBA-15 catalysts in dry reforming of methane. Int J Hydrogen Energy 39(15):7780–7787. https://doi.org/10.1016/j.ijhydene.2014.03.040

    Article  CAS  Google Scholar 

  43. Zhi G, Guo X, Wang Y, Jin G (2011) Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide. Catal Commun 16(1):56–59. https://doi.org/10.1016/j.catcom.2011.08.037

    Article  CAS  Google Scholar 

  44. Mazumder J, de Lasa HI (2014) Ni catalysts for steam gasification of biomass: Effect of La2O3 loading. Catal Today 237:100–110. https://doi.org/10.1016/j.cattod.2014.02.015

    Article  CAS  Google Scholar 

  45. Papageridis KN, Siakavelas G, Charisiou ND, Avraam DG, Tzounis L, Kousi K, Goula MA (2016) Comparative study of Ni Co, Cu supported on γ-alumina catalysts for hydrogen production via the glycerol steam reforming reaction. Fuel Process Technol 152:156–175. https://doi.org/10.1016/j.fuproc.2016.06.024

    Article  CAS  Google Scholar 

  46. Ayodele BV, Khan MR, Lam SS, Cheng CK (2016) Production of CO-rich hydrogen from methane dry reforming over lanthania-supported cobalt catalyst: Kinetic and mechanistic studies. Int J Hydrog Energy 41(8):4603–4615. https://doi.org/10.1016/j.ijhydene.2016.01.091

    Article  CAS  Google Scholar 

  47. Sato S, Takahashi R, Kobune M, Gotoh H (2009) Basic properties of rare earth oxides. Appl Catal A: Gen 356(1):57–63. https://doi.org/10.1016/j.apcata.2008.12.019

    Article  CAS  Google Scholar 

  48. Fouskas A, Kollia M, Kambolis A, Papadopoulou Ch, Matralis H (2014) Boron-modified Ni/Al2O3 catalysts for reduced carbon deposition during dry reforming of methane. Appl Catal A: Gen 474:125–134. https://doi.org/10.1016/j.apcata.2013.08.016

    Article  CAS  Google Scholar 

  49. Ayodele BV, Khan MR, Cheng CK (2016) Catalytic performance of ceria-supported cobalt catalyst for CO-rich hydrogen production from dry reforming of methane. Int J Hydrog Energy 41(1):198–207. https://doi.org/10.1016/j.ijhydene.2015.10.049

    Article  CAS  Google Scholar 

  50. Mohanty P, Pant KK, Parikh J, Sharma DK (2011) Liquid fuel production from syngas using bifunctional CuO-CoO-Cr2O3 catalyst mixed with MFI zeolite. Fuel Process Technol 92(3):600–608. https://doi.org/10.1016/j.fuproc.2010.11.017

    Article  CAS  Google Scholar 

  51. Vo DVN, Cooper CG, Nguyen TH, Adesina AA, Bukur DB (2012) Evaluation of alumina-supported Mo carbide produced via propane carburization for the Fischer-Tropsch synthesis. Fuel 93:105–116. https://doi.org/10.1016/j.fuel.2011.10.015

    Article  CAS  Google Scholar 

  52. Charisiou ND, Tzounis L, Sebastian V, Hinder SJ, Baker MA, Polychronopoulou K, Goula MA (2019) Investigating the correlation between deactivation and the carbon deposited on the surface of Ni/Al2O3 and Ni/La2O3-Al2O3 catalysts during the biogas reforming reaction. Appl Surf Sci 474:42–56. https://doi.org/10.1016/j.apsusc.2018.05.177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr. Ngoc Thang Tran would like to acknowledge the financial support from IUH Research Grant Scheme to conduct this study (21/1H04). This research is also funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 104.05-2019.344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Viet N. Vo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, N.T., Kumar, P.S., Van Le, Q. et al. CO2 Reforming of CH4 on Mesoporous Alumina-Supported Cobalt Catalyst: Optimization of Lanthana Promoter Loading. Top Catal 64, 338–347 (2021). https://doi.org/10.1007/s11244-021-01428-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01428-x

Keywords

Navigation