Skip to main content
Log in

Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The most devastating disease currently threatening to destroy the banana industry worldwide is undoubtedly Sigatoka Leaf spot disease caused by Mycosphaerella fijiensis. In this study, we developed a transformation system for banana and expressed the endochitinase gene ThEn-42 from Trichoderma harzianum together with the grape stilbene synthase (StSy) gene in transgenic banana plants under the control of the 35S promoter and the inducible PR-10 promoter, respectively. The superoxide dismutase gene Cu,Zn-SOD from tomato, under control of the ubiquitin promoter, was added to this cassette to improve scavenging of free radicals generated during fungal attack. A 4-year field trial demonstrated several transgenic banana lines with improved tolerance to Sigatoka. As the genes conferring Sigatoka tolerance may have a wide range of anti-fungal activities we also inoculated the regenerated banana plants with Botrytis cinerea. The best transgenic lines exhibiting Sigatoka tolerance were also found to have tolerance to B. cinerea in laboratory assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2-4, D:

2,4-dichlorophenoxy acetic acid

2iP:

6(γ,γ-dimethylallyl-amino)purine

BAP:

6-Benzylaminopurine

DTT:

Dithiothreitol

IAA:

Indole acetic acid

IBA:

Indole butyric acid

MS:

Murashige and Skoog (1962)

NAA:

α-Naphthalene acetic acid

SH:

Schenk and Hildebrant (1972)

References

  • Atkinson HJ, Grimwood S, Johnston K, Green J (2004) Prototype demonstration of transgenic resistance to the nematode Radophylus similes conferred on banana by cystatin. Trans Res 13:135–142

    Article  CAS  Google Scholar 

  • Becker DK, Dugdale B, Smith MK, Harding RM, Dale JL (2000) Genetic transformation of Cavendish banana (Musa spp. AAA group) cv. ‘Grand Nain’ via microprojectile bombardment. Plant Cell Rep 19:229–234

    Article  CAS  Google Scholar 

  • Bernatzky R, Tanksley SD (1986) Methods for detection of single or low copy sequences in tomato on Southern blots. Plant Mol Biol Rep 4:37–41

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA (2003) MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596

    CAS  PubMed  Google Scholar 

  • Chillet M, Abadie C, Hubert Q, Chilin-Charles Y, Lapeyre De, de Bellaire L (2009) Sigatoka disease reduces the greenlife of bananas. Crop Protection 28:41–45

    Article  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Trans Res 5:213–218

    Article  CAS  Google Scholar 

  • Côte FX, Domergue R, Monmarson S, Schwendiman J, Teisson C, Escalant JV (1996) Embryogenic cell suspensions from the male flower of Musa AAA cv. Grand Nain. Physiol Plant 97:285–290

    Article  Google Scholar 

  • Coutos-Thevenot P, Poinssot B, Bonomelli A, Year H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter. J Exp Bot 52:901–910

    Article  CAS  PubMed  Google Scholar 

  • Daub ME, Ehrenshaft M (2000) The photoactivated Cercospora toxin cercosporin: contribution to plant disease and fundamental biology. Annu Rev Phytopathol 38:491–513

    Article  Google Scholar 

  • Delaunois B, Cordelier S, Conreux A, Clement C, Jeandet P (2009) Molecular engineering of resveratrol in plants. Plant Biotechnol J 7:2–12

    Article  CAS  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Dhed’a D, Dumortier F, Panis B, Vuylsteke D, De Langhe E (1991) Plant regeneration in cell suspension cultures of the cooking banana cv. ‘Bluggoe’ (Musa spp. ABB group). Fruits 46:125–135

    Google Scholar 

  • Dugdale B, Becker DK, Beetham PR, Harding RM, Dale JL (2000) Promoters derived from banana bunchy top virus DNA-1 to -5 direct vascular-associated expression in transgenic banana (Musa spp.). Plant Cell Rep 19:810–814

    Article  CAS  Google Scholar 

  • Dugdale B, Becker DK, Harding RM, Dale JL (2001) Intron-mediated enhancement of the banana bunchy top virus DNA-6 promoter in banana (Musa spp.) embryogenic cells and plants. Plant Cell Rep 20:220–226

    Article  CAS  Google Scholar 

  • Ehsani-Modhaddam B, Charles MT, Carisse O, Khanizad S (2006) Superoxide dismutase responses of strawberry cultivars to infection my Mycosphaerella fragariae. J Plant Physiol 163:147–153

    Article  Google Scholar 

  • El Hadrami A, Kone D, Lepoivre P (2005) Effect of juglone on active oxygen species and antioxidant enzymes in susceptible and partially resistant banana cultivars to Black Leaf Streak Disease. Eur J Plant Pathol 113:241–254

    Article  Google Scholar 

  • Elad Y (1992) The use of antioxidants (free radical scavengers) to control grey mold (Botrytis cinerea) and white mold (Sclerotinia scleroliorum) in various crops. Plant Pathol 41:417–426

    Article  CAS  Google Scholar 

  • Emani C, Garcia JM, Lopata-Finch E, Pozo MJ, Uribe P, Kim DJ, Sunilkumar G, Cook DR, Kenely CM, Rathore KS (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biol J 5:321–336

    Google Scholar 

  • Engelen Van (1995) pBINPLUS: an improved plant transformation vector based on pBIN19. Transgenic Res 4:288–290

    Article  PubMed  Google Scholar 

  • Escalant JV, Teisson C, Cote F (1994) Amplified somatic embrygenesis from male flowers of triploid banana and plantain cultivars (Musa spp.). In Vitro Cell Dev Biol 30:181–186

    Google Scholar 

  • Ganapathi TR, Higgs NS, Balint-Kurti PJ, Arntzen CJ, May GD, Van Eck JM (2001) Agrobacterium-mediated transformation of the embryogenic cell suspension of the banana cultivar Rasthali (AAB). Plant Cell Rep 20:157–162

    Article  CAS  Google Scholar 

  • Ganapathi TR, Chakrabarti A, Suprasanna P, Bapat VA (2002) Genetic transformation in banana. In: Jaiwai PK, Singh RP (eds) Plant genetic engineering, vol 6. Sci-Tech Pub Co, Houston, pp 83–109

    Google Scholar 

  • Giovinazzo G, d’Amico L, Paradisio A, Bollini R, Sparvoli F, DeGara L (2005) Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotech J 3:57–69

    Article  CAS  Google Scholar 

  • Grapin A, Schwendiman J, Teisson C (1996) Somatic embryogenesis in plantain banana. In Vitro Cell Dev Biol 32:66–77

    Google Scholar 

  • Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stocker RH, Thomzik JE, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    Article  CAS  PubMed  Google Scholar 

  • Harelimana G, Lepoivre P, Jijakli H, Mourichon X (1997) Use of Mycosphaerella fijiensis toxins for the selection of banana cultivars resistant to Black Leaf Streak. Euphytica 96:125–128

    Article  Google Scholar 

  • Hermann SR, Harding RM, Dale JL (2001) The banana actin 1 promoter derives near-constitutive transgene expression in vegetative tissues of banana (Musa spp.). Plant Cell Rep 20:525–530

    Article  CAS  Google Scholar 

  • Jach G, Görnhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    Article  CAS  PubMed  Google Scholar 

  • Jongedijk E, Tigelaar H, van Roekel JSC, Bres-Vloemans SA, Dekker I, van den Elzen PJM, Cornelissen BJC, Melchers LS (1995) Synergistic activity of chitinase and β-1, 3-glucanase enhances fungal resistance in transgenic tomato plants. Euphytica 85:173–180

    Article  CAS  Google Scholar 

  • Khanna HK, Becker D, Kleidon J, Dale J (2004) Centrifugation assisted Agrobacterium-mediated transformation (CAAT) of embryogenic cell suspension of banana (Musa spp. Cavendish AAA and Lady finger AAB). Mol Breeding 14:239–252

    Article  CAS  Google Scholar 

  • Kiggundu A, Pillay M, Viljoen A, Gold C, Tushemereirwe W, Kunert K (2003) Enhancing banana weevil (Cosmopolites sordidus) resistance by plant genetic modification: a prospective. African J Biotech 2:369–563

    Google Scholar 

  • Kikkert JR, Ali GS, Wallace PG, Reisch B, Reustle GM (2000) Expression of a fungal chitinase in Vitis vinifera L. ‘Merlot’ and ‘Chardonnay’ plants produced by biolistic transformation. Acta Hort 528:297–303

    CAS  Google Scholar 

  • Kosky RG, Silva MF, Perez LP, Gilliard T, Martinez FB, Vega MR, Milian MC, Mendoza EQ (2002) Somatic embryogenesis of the banana hybrid cultivar FHIA-18 (AAAB) in liquid medium and scaled-up in a bioreactor. Plant Cell Tiss Org Cult 68:16–21

    Google Scholar 

  • Lepoivre P (2000) Fungal diseases of foliage. In: Jones DR (ed) Diseases of banana, abac and enset. CABI Publishing, Wallingford, pp 71–72

    Google Scholar 

  • Lepoivre P, Busogoro JP, El Hadrami A, Carlier J, Harelimana G, Mourichon X, Panis B, Stella-Riveros A, Roux N, Salle G, Strosse H, Swennen R (2002) Banana-Mycosphaerella fijiensis (black leaf streak disease) interactions. In: INIBAP (ed) Proceeding of the second international workshop on Mycosphaerella leaf spot disease of bananas, May 20–23. San Jose, Costa Rica

    Google Scholar 

  • Lorito M, Harman GE, Hayes CK, Broadway RM, Tronsmo A, Woo SL, Di Pietro A (1993) Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Mol Plant Pathol 83:302–307

    CAS  Google Scholar 

  • Lorito M, Woo SL, Fernandez IG, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:7860–7865

    Article  CAS  PubMed  Google Scholar 

  • May GD, Afza R, Mason HS, Wieko A, Novak FJ, Arntzen CJ (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Bio/Technology 13:486–492

    Article  CAS  Google Scholar 

  • Mayer AM, Staples RC, Gil-ad NL (2001) Mechanisms of survival of necrotrophic fungal pathogens in hosts expressing the hypersensitive response. Phytochemistry 58:33–41

    Article  CAS  PubMed  Google Scholar 

  • Mourichon X, Carlier J, Foure E (1997) Sigatoka leaf spot diseases—Black leaf streak disease (black Sigatoka), Sigatoka disease (yellow Sigatoka). Musa disease fact sheet no. 8

  • Muckenschnabel I, Williamson B, Goodman BA, Lyon GD, Stewart D, Deighton N (2001) Markers for oxidative stress associated with soft rots in French beans (Phaseolus vulgaris) infected by Botrytis cinerea. Planta 212:376–381

    Article  CAS  PubMed  Google Scholar 

  • Muckenschnabel I, Goodman BA, Williamson B, Lyon GD, Deighton N (2002) Infection of leaves of Arabidopsis thaliana by Botrytis cinerea: changes in ascorbic acid, free radicals and lipid peroxidation products. J Exp Bot 53:207–214

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Navarro C, Escobedo RM, Mayo A (1997) In vitro plant regeneration from embryogenic cultures of a diploid and a triploid, Cavendish banana. Plant Cell Tiss Org Cult 51:17–25

    Article  Google Scholar 

  • Novak FJ, Afza R, Van Duren M, Perea-Dallos M, Conger BV, Xiaolang T (1989) Somatic embryogenesis and plant regeneration in suspension cultures of dessert (AA and AAA) and cooking (ABB) bananas (Musa spp.). Biotechnology 7:154–159

    Article  Google Scholar 

  • Ortiz RD, Vuylsteke RSB, Ferris JU, Okoro AN, Guessan OB, Hemeng DK, Yeboah K, Afreh-Nuamah EKS, Ahiekpo E, Fouré BA, Adelaja M, Ayodele OB, Arene FEO, Ikiediugwu AN, Agbor AN, Nwogu E, Okoro G, Kayode IK, Ipinmoye SA, Lawrence A (1997) Developing new plantain cultivars for Africa. Plant Var Seeds 10:39–57

    Google Scholar 

  • Pei XW, Chen SK, Wen RM, Ye S, Huang JQ, Zhang YQ, Wang BS, Wang ZX, Jia SR (2005) Creation of transgenic banana expressing human lysozyme gene for Panama wilt resistance. J Integrative Plant Biol 47:971–977

    Article  CAS  Google Scholar 

  • Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S, Galun E (1993) Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu, Zn superoxide dismutases. Theor Appl Genet 85:568–576

    Article  CAS  Google Scholar 

  • Ploetz RC, Mourichon X (1999) First report of Black Sigatoka in Florida. Plant Dis 83:300

    Article  Google Scholar 

  • Prakash Bolar J, Norelli JL, Harman GE, Brown SK, Aldwinckle HS (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Ventura inaequalis) in transgenic apple plants. Transgenic Res 10:533–543

    Article  Google Scholar 

  • Remy S, François I, Cammue BPA, Swennen R, Sagi L (1998) Co-transformation as a potential tool to create multiple and durable disease resistance in Banana. Proc Int Symp Biotechnology Tropical & Subtropical Species. Acta Hort 461:361–365

    Google Scholar 

  • Reyes-Borja WO, Sotomayor I, Garzón I, Vera D, Cedeño M, Castillo B, Tanaka A, Hase Y, Sekozawa Y, Sugaya S, Gemma H (2007) Alteration of resistance to black Sigatoka (Mycosphaerella fijiensis Morelet) in banana by in vitro irradiation using carbon ion-beam. Plant Biotechnol 24:349–353

    Google Scholar 

  • Rooke L, Byrne D, Salgueiro S (2005) Marker gene expression driven by the maize ubiquitin promoter in transgenic wheat. Ann Bot 136:167–172

    Google Scholar 

  • Sagi L (2000) Genetic engineering in banana for disease resistance—future possibilities. In: Jones DR (ed) Diseases of banana, abaca and enset. CABI Publications, Wallingford, pp 465–515

    Google Scholar 

  • Sagi L, Panis B, Remy S, Schoofs H, De Smet K, Swennen R, Bruno PAC (1995) Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Bio/Technology 13:481–485

    Article  CAS  PubMed  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Schenk PM, Sagi L, Remans T, Dietzgen RG, Bernard MJ, Graham MW, Manners JM (1999) A promoter from sugarcane bacilliform badnavirus drives transgene expression in banana and other monocot and dicot plants. Plant Mol Biol 39:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Stewart CN, Via LE (1993) A rapid CTAB DNA isolation technique for RAPD fingerprint and other PCR applications. Biotechniques 14:748–750

    CAS  PubMed  Google Scholar 

  • Tiedemann A (1997) Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiol and Mol Plant Pathol 50:151–166

    Article  CAS  Google Scholar 

  • Vakili NG (1968) Response of Musa acuminata species and edible cultivars to infection by Mycosphaerella musicola. Trop Agr 45:13–22

    Google Scholar 

  • Wiese W, Vornam B, Krause E, Kindl H (1994) Structural organization and differential expression of three stilbene synthase genes located on a 13 kb grapevine DNA fragment. Plant Mol Biol 26:667–677

    Article  CAS  PubMed  Google Scholar 

  • Yang IC, Iommarini JP, Becker DK, Hafner GJ, Dale JL, Harding RM (2003) A promoter derived from taro bacilliform badnavirus drives strong expression in transgenic banana and tobacco plants. Plant Cell Rep 21:1199–1206

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Maher EA, Masoud S, Dixon RA, Lamb CJ (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology 12:807–812

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avihai Perl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2070 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vishnevetsky, J., White, T.L., Palmateer, A.J. et al. Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Res 20, 61–72 (2011). https://doi.org/10.1007/s11248-010-9392-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-010-9392-7

Keywords

Navigation