Skip to main content
Log in

A barley cysteine-proteinase inhibitor reduces the performance of two aphid species in artificial diets and transgenic Arabidopsis plants

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Cystatins from plants have been implicated in plant defense towards insects, based on their role as inhibitors of heterologous cysteine-proteinases. We have previously characterized thirteen genes encoding cystatins (HvCPI-1 to HvCPI-13) from barley (Hordeum vulgare), but only HvCPI-1 C68 → G, a variant generated by direct-mutagenesis, has been tested against insects. The aim of this study was to analyze the effects of the whole gene family members of barley cystatins against two aphids, Myzus persicae and Acyrthosiphon pisum. All the cystatins, except HvCPI-7, HvCPI-10 and HvCPI-12, inhibited in vitro the activity of cathepsin L- and/or B-like proteinases, with HvCPI-6 being the most effective inhibitor for both aphid species. When administered in artificial diets, HvCPI-6 was toxic to A. pisum nymphs (LC50 = 150 μg/ml), whereas no significant mortality was observed on M. persicae nymphs up to 1000 μg/ml. The effects of HvCPI-6 ingestion on A. pisum were correlated with a decrease of cathepsin B- and L-like proteinase activities. In the case of M. persicae, there was an increase of these proteolytic activities, but also of the aminopeptidase-like activity, suggesting that this species is regulating both target and insensitive enzymes to overcome the effects of the cystatin. To further analyze the potential of barley cystatins as insecticidal proteins against aphids, Arabidopsis plants expressing HvCPI-6 were tested against M. persicae. For A. pisum, which does not feed on Arabidopsis, a combined diet-Vicia faba plant bioassay was performed. A significant delay in the development time to reach the adult stage was observed in both species. The present study demonstrates the potential of barley cystatins to interfere with the performance of two aphid species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Abraham Z, Martinez M, Carbonero P, Diaz I (2006) Structural and functional diversity within the cystatin gene family of Hordeum vulgare. J Exp Bot 57:4245–4255

    CAS  PubMed  Google Scholar 

  • Álvarez-Alfageme F, Martinez M, Pascual-Ruiz S, Castañera P, Diaz I, Ortego F (2007) Effects of potato plants expressing a barley cystatin on the predatory bug Podisus maculiventris via herbivorous prey feeding on the plant. Transgenic Res 16:1–13

    PubMed  Google Scholar 

  • Azzouz A, Cherqui A, Campan EDM, Rahbé Y, Duport G, Jouanin L, Kiser L, Giordanengo P (2005) Effects of plant protease inhibitors, oryzacystatin I and soybean Bowman-Birk inhibitor, on the aphid Macrosiphum euphorbiae (Homoptera, Aphididae) and its parasitoid Aphelinus abdominalis (Hymenoptera, Aphididae). J Insect Physiol 51:75–86

    CAS  PubMed  Google Scholar 

  • Baulcome DC, Saunders GR, Bevan MW, Mayo MA, Harrison BD (1986) Expression of biotechnologically active viral satellite RNA from the nuclear genome of transformed plants. Nature 321:446–449

    Google Scholar 

  • Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4:1–13

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Cowgill SE, Wright C, Atkinson HJ (2002) Transgenic potatoes with enhanced levels of nematode resistance do not have altered susceptibility to nontarget aphids. Mol Ecol 11:821–827

    CAS  PubMed  Google Scholar 

  • Cristofoletti PT, Ribeiro AF, Deraison C, Rahbé Y, Terra WR (2003) Midgut adaptation and digestive enzyme distribution in a phloem feeding insect, the pea aphid Acythosiphon pisum. J Insect Physiol 49:11–24

    CAS  PubMed  Google Scholar 

  • Cristofoletti PT, Mendonça de Sousa FA, Rahbé Y, Terra WR (2006) Characterization of a membrane-bound aminopeptidase purified from Acyrthosiphon pisum midgut cells. A major binding site for toxic mannose lectins. FEBS J 273:5574–5588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta I, Saha P, Majumder P, Sarkar A, Chakraborti D, Banerjee S, Das S (2005) The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco. Plant Biotechnol J 3:601–611

    CAS  PubMed  Google Scholar 

  • Gatehouse AMR, Davison GM, Stewart JN, Gatehouse LN, Kumar A, Geoghegan IE, Birch ANE, Gatehouse JA (2003) Concavalin A inhibits development of tomato moth (Lacanobia oleracea) and peach-potato aphid (Myzus persicae) when expressed in transgenic potato plants. Mol Breed 5:153–165

    Google Scholar 

  • Girard C, Rivard D, Kiggundu A, Kurnet K, Gleddie SC, Cloutier C, Michaud D (2007) A multicomponent, elicitor-inducible cystatin complex in tomato, Solanum lycopersicum. New Phytol 173:841–851

    CAS  PubMed  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    CAS  PubMed  Google Scholar 

  • Gutierrez-Campos R, Torres Acosta J, Saucedo-Arias LJ, Gomez-Lim MA (1999) The use of cysteine proteinase inhibitors to engineer resistance against potyvirusses in transgenic tobacco plants. Nature Biotechnol 17:1223–1226

    CAS  Google Scholar 

  • Haq SK, Atif SM, Khan RH (2004) Protein proteinase inhibitor genes in combat against insects, pests and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys 431:145–159

    CAS  PubMed  Google Scholar 

  • International Aphids Genomics Consortium (2010) Genome sequence of the pea aphid Acyrtosiphon pisum. PLoS Biology 8:e1000313

    Google Scholar 

  • Kehr J (2006) Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. J Exp Bot 57:767–774

    CAS  PubMed  Google Scholar 

  • Lantz MS, Ciborowski P (1994) Zymographic techniques for detection and characterization of microbial proteases. Meth Enzymol 235:563–594

    CAS  PubMed  Google Scholar 

  • Lawo NC, Wackers FL, Romeis J (2009) Indian Bt cotton varieties do not affect the performance of cotton aphids. PLoS ONE 4:e4804

    PubMed  PubMed Central  Google Scholar 

  • Margis R, Reis EM, Villeret V (1998) Structural and phylogenetic relationships among plant and animal cystatins. Arch Biochem Biophys 359:24–30

    CAS  PubMed  Google Scholar 

  • Martinez M, Diaz I (2008) The origin and evolution of plant cystatins and their target cysteine proteinases indicate a complex functional relationship. BMC Evol Biol 8:198

    PubMed  PubMed Central  Google Scholar 

  • Martinez M, Lopez-Solanilla E, Rodriguez-Palenzuela P, Carbonero P, Diaz I (2003) Inhibition of plant-pathogenic fungi by the barley cystatin Hv-CPI (gene Icy) is not associated with its cysteine-proteinase inhibitory properties. Mol Plant-Microbe Interact 16:876–883

    CAS  PubMed  Google Scholar 

  • Martinez M, Diaz-Mendoza M, Carrillo L, Diaz I (2007) Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases. FEBS Lett 581:2914–2918

    CAS  PubMed  Google Scholar 

  • Martinez M, Cambra I, Carrillo L, Diaz-Mendoza M, Diaz I (2009) Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination. Plant Physiol 151:1531–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michaud D, Cantin L, Raworth DA, Vrain TC (1996) Assessing the stability of cystatin/cysteine proteinase complexes using mildly-denaturing gelatin-polyacrylamide gel electrophoresis. Electrophoresis 17:74–79

    CAS  PubMed  Google Scholar 

  • Nissen MS, Kumar GNM, Youn B, Knowles DB, Lam KS, Ballinger WI, Knowles NR, Kang CH (2009) Characterization of Solanum tuberosum multicystatin and its structural comparison with other cystatins. Plant Cell 21:861–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novillo C, Castañera P, Ortego F (1997) Characterization and distribution of chymotrypsin-like and other digestive proteases in Colorado potato beetle larvae. Arch Insect Biochem Physiol 36:181–201

    CAS  Google Scholar 

  • Oñate-Sanchez L, Vicente-Carbajosa J (2008) DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Res Notes 1:93

    PubMed  PubMed Central  Google Scholar 

  • Ortego F, Novillo C, Castañera P (1996) Characterization and distribution of digestive proteases of the stalk corn borer, Sesamia nonagrioides Lef (Lepidoptera: Noctuidae). Arch Insect Biochem Physiol 33:163–180

    CAS  Google Scholar 

  • Pernas M, Sanchez-Monge R, Gomez L, Salcedo G (1998) A chestnut seed cystatin differentially effective against cysteine proteinase from closely related pests. Plant Mol Biol 38:1235–1242

    CAS  PubMed  Google Scholar 

  • Pernas M, Sanchez-Monge R, Sanchez-Ramos I, Lombardero M, Arteaga C, Castañera P, Salcedo G (2000) Der p1 and Der f1, the highly related and major allergens from house mites, are differentially affected by a plant cystatin. Clinic Exp Allergy 30:972–978

    CAS  Google Scholar 

  • Porcar M, Grenier AM, Federici B, Rahbé Y (2009) Effects of Bacillus thuringiensis delta-endotoxins on the pea aphid (Acyrthosiphon pisum). Appl Environ Microbiol 75:4897–4900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahbé Y, Sauvion N, Febvay G, Peumans WJ, Gatehouse AMR (1995) Toxicity of lectins and processing of ingested proteins in the pea aphid Acyrthosiphon pisum. Entomol Exp Appl 76:143–155

    Google Scholar 

  • Rahbé Y, Deraison C, Bonade-Bottino M, Girard C, Nardon C, Jouanin L (2003a) Effects of the cysteine protease inhibitor oryzacystatin (OC-I) on different aphids and reduced performance of Myzus persicae on OC-I expressing transgenic oilseed rape. Plant Sci 164:441–450

    Google Scholar 

  • Rahbé Y, Ferrasson E, Rabesona H, Quillien L (2003b) Toxicity to the pea aphid Acyrthosiphon pisum of anti-chymotrypsin isoforms and fragments of Bowman-Birk protease inhibitors from pea seeds. Insect Biochem Mol Biol 33:299–306

    PubMed  Google Scholar 

  • Ribeiro APO, Pereira EJG, Galvan TL, Picanco MC, Picoli EAT, da Silva DJH, Fari MG, Otoni WC (2006) Effect of eggplant transformed with oryzacystatin gene on Myzus persicae and Macrosiphon euphorbiae. J Appl Entomol 130:84–90

    CAS  Google Scholar 

  • Rispe C, Kutsukake M, Doublet V, Hudaverdian S, Legeai F, Simon J-C, Tagu D, Fukatsu T (2008) Large gene family expansion and variable selective pressures for cathepsin B in aphids. Mol Biol Evol 25:5–17

    CAS  PubMed  Google Scholar 

  • Shahidi-Noghabi S, van Damme EJM, Smagghe G (2009) Expression of Sambucus nigra agglutinin (SNA-I′) from elderberry in transgenic tobacco plants results in enhanced resistance to different insect species. Transgenic Res 18:249–259

    CAS  PubMed  Google Scholar 

  • Shahnaz SN, van Damme EJM, Smagghe G (2008) Carbohydrate-binding activity of the type-2 ribosome-inactivating protein SNA-I from elderberry (Sambucus nigra) is a determining factor for its insecticidal activity. Phytochemistry 69:2972–2978

    Google Scholar 

  • Stubbs MT, Laber B, Bode W, Huber R, Jerala R, Lenarcic B, Turk V (1990) The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J 9:1939–1947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor B, Powell A (1982) Isolation of plant DNA and RNA. Focus 4:4–6

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Alberto Fereres (Centro de Ciencias Medioambientales, CSIC, Madrid, Spain) for providing the colonies of M. persicae. The financial support from the Spanish Ministerio de Ciencia e Innovación (project BFU2008-01166), the Agencia Española de Cooperación Internacional para el Desarrollo (project A/017236/08), the Spanish Ministerio de Medioambiente y Medio Rural y Marino, the Fund for Scientific Research (FWO-Vlaanderen, Belgium) and the Special Research Fund of Ghent University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Ortego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo, L., Martinez, M., Álvarez-Alfageme, F. et al. A barley cysteine-proteinase inhibitor reduces the performance of two aphid species in artificial diets and transgenic Arabidopsis plants. Transgenic Res 20, 305–319 (2011). https://doi.org/10.1007/s11248-010-9417-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-010-9417-2

Keywords

Navigation