Skip to main content

Advertisement

Log in

Fundamental studies of Au contacts in MEMS RF switches

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Microelectromechanical systems (MEMS) radio frequency (RF) switches hold great promise in a myriad of commercial, aerospace, and military applications. However, there is little understanding of the factors determining the performance and reliability of these devices. Fundamental studies of hot-switched gold (Au) contacts were conducted using a micro/nanoadhesion apparatus as a switch simulator. Experiments were conducted in a well defined air environment under precisely controlled operating conditions. Fundamental properties were connected to performance with an emphasis on the effects of contact force and electric current on contact resistance (R), microadhesion, and reliability/durability. Electric current had the most profound effect on switch performance. Observations at low current (1–10 μA) include: (1) slightly higher R; (2) asperity creep; (3) high adhesion after rapid switching; (4) switch bouncing; and (5) reasonable durability. Conversely, observations at high current (1–10 mA) include: (1) slightly lower R; (2) melting; (3) no measurable adhesion; (4) less propensity for switch bouncing; (5) necking of contacts; and (6) poor reliability and durability due to switch shorting. Low current behavior was dominated by the propensity to form smooth surface contacts by hammering, which led to high van der Waals force. High current behavior was dominated by the formation of Au nanowires that bridge the contact during separation. Data suggest the presence of an adventitious film containing carbon and oxygen. Aging of the contacts in air was found to reduce adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P.M. Zavracky S. Majumder N.E. McGruer (1997) IEEE J. Micromech. Syst. 10 511

    Google Scholar 

  • J.J. Yao, J. Micromech. Microeng. 10 (2000) R9.

    Google Scholar 

  • M. Madou (1997) Fundamentals of Microfabrication CRC Press Boca Raton

    Google Scholar 

  • S.T. Patton K.C. Eapen J.S. Zabinski (2001) Tribol. Int. 34 481

    Google Scholar 

  • J. Schimkat (1999) Sens. Actuat. A 73 138

    Google Scholar 

  • J. Beale R.F. Pease (1994) IEEE Trans. Comp. Pack. Manufact. Technol. A 17 257

    Google Scholar 

  • E.R. Brown (1998) IEEE Trans. Microwave Theory Tech. 46 1868

    Google Scholar 

  • W.P. Taylor O. Brand M.G. Allen (1998) IEEE J. Micromech. Syst. 7 181

    Google Scholar 

  • N.S. Barker G.M. Rebeiz (1998) IEEE Trans. Microwave Theory Tech. 46 1881

    Google Scholar 

  • Z.J. Yao S. Chen S. Estelman D. Denniston C. Goldsmith (1999) IEEE J. Micromech. Syst. 8 129

    Google Scholar 

  • S.P. Pacheco, L.P.J. Katehi and C.T.C. Nguyen, IEEE MTT-S Inter. Microwave Symp. Proc. (2000) 165.

  • D. Hah E. Yoon S. Hong (2000) IEEE Trans. Microwave Theory Tech. 48 2540

    Google Scholar 

  • X. Lafontan F. Pressecq G. Perez C. Pufaza J.M. Karam (2001) Proc. SPIE. 4558 11

    Google Scholar 

  • J.Y. Park G.H. Kim K.W. Chung J.U. Bu (2001) Sens. Actuat. A 89 88

    Google Scholar 

  • J. Wellman Technology readiness overview (2003) RF MEMS switches NASA Electronic Parts and Packaging Program March

    Google Scholar 

  • B.D. Jensen, K. Saitoh, J.L. Volakis and K. Kurabayashi, Presented at the 6th ASME-JSME Therm. Engineer. Joint Conf. Hawaii Island, Hawaii, 6–11 June, 2003.

  • K.E. Peterson (1979) IBM J. Res. Devel. 23 376

    Google Scholar 

  • S. Majumder, N.E. McGruer, P.M. Zavracky, G.G. Adams, R.H. Morrison and J. Krim, in: Tribology Issues and Opportunities in MEMS, ed., B. Bhushan (Kluwer Academic Publishers, Dordrecht, 1998) p. 471.

  • C.L. Goldsmith Z. Yao S. Eshelman D. Denniston (1998) IEEE Microwave Guided Wave Lett. 8 269

    Google Scholar 

  • I. Schiele J. Huber B. Hillerich F. Kozlowski (1998) Sens. Actuat. A 66 345

    Google Scholar 

  • A. Malczewski S. Eshelman B. Pillans J. Ehmke C.L. Goldsmith (1999) IEEE Microwave Guided Wave Lett. 9 517

    Google Scholar 

  • C.T.C. Nguyen L.P.B. Katehi G.M. Rebeiz (1999) Proc. IEEE 86 1756

    Google Scholar 

  • V. Sieracki, Presented at the 2000 DARPA AOC Radar and EW Conference, Laurel, Md, 25–26 October, 2000.

  • D. Balaraman, S.K. Bhattacharya, F. Ayazi and J. Papapolymerou, IEEE MTT-S Inter. Microwave Symp. Proc. (2002) 1225.

  • H.F. Schlaak, Proc. 21st Conf. Electr. Cont. (2002) 19.

  • Y. Wang L. Zhiyong D.T. McCormick N.C. Tien (2003) Sens. Actuat. A 103 231

    Google Scholar 

  • J.A. Wright, Y.C. Tai and G. Lilienthal, Proc. Solid State Sens. Actuat. Workshop (1998) 304.

  • M. Ruan J. Shen C.B. Wheeler (2001) IEEE J. Micromech. Syst. 71 491

    Google Scholar 

  • R. Allan, Electronic Design Online (2002) ID-2138, Availablefrom:URL:http://www.elecdesign.com/Articles/Index.cfm?ArticleID=2138.

  • D. Hyman A. Schmitz B. Warneke T.Y. Hsu J. Lam J. Brown J. Schaffner A. Walston R.Y. Loo G.L. Tangonan M. Mehregany J. Lee (1999) Electron. Lett. 35 224

    Google Scholar 

  • Z. Li D. Zhang T. Li W. Wang G. Wu (2000) J. Micromech. Microeng. 10 329

    Google Scholar 

  • G. Rebeiz, Short Course, Presented at Wright-Patterson Air Force Base, OH, June, 2002.

  • J.M. Kim C.W. Baek J.H. Park D.S. Shin Y.S. Lee Y.K. Kim (2002) J. Micromech. Microeng. 12 688

    Google Scholar 

  • J.A. Wright and Y.C. Tai, NARM Relay Conf. (1998) 13–1.

  • Anonymous, Available from: URL:http://relays.tycoelectronics.com/schrack/pdf/relay_basics.pdf.

  • R. Holm (1967) Electric Contacts Springer-Verlag New York

    Google Scholar 

  • E.J.J. Kruglick K.S.J. Pister (1999) IEEE J. Micromech. Syst. 8 264

    Google Scholar 

  • L.E. Larson, R.H. Hackett and R.F. Lohr, Proc. 6th Intl. Conf. Solid-State Sens. Actuat. (1999) 743.

  • D.J. Hyman, Ph.D. dissertation, Case Western Reserve University, 2000.

  • M.A. Gretillat P. Thieboud C. Linder N.F. de Rooij (1995) J. Micromech. Microeng. 5 156

    Google Scholar 

  • J. Yao and M. Chang, Proc. 8th Intl. Conf. Solid-State Sens. Actuat. (1995) 384.

  • S. Hannoe H. Hosaka (1996) Microsyst. Technol. 3 31

    Google Scholar 

  • M.A. Gretillat F. Gretillat N.F. de Rooij (1999) J. Micromech. Microeng. 9 324

    Google Scholar 

  • D. Hyman M. Mehregany (1999) IEEE Trans. Comp. Pack. Technol. 22 357

    Google Scholar 

  • J. Tringe W. Wilson J. Houston (2001) Proc. SPIE 4558 151

    Google Scholar 

  • J.W. Tringe T.A. Uhlman A.C. Oliver J.E. Houston (2003) J. Appl. Phys. 93 4661

    Google Scholar 

  • C.N. Neufeld C.N. Rieder (1995) IEEE Trans. Comp. Pack. Manufact. Technol. A 18 399

    Google Scholar 

  • H.P. Koidl, W.F. Rieder and Q.R. Salzman, Proc. 43rd IEEE Holm Conf. Electr. Cont. (1997) 328.

  • H.P. Koidl, W.F. Rieder and Q.R. Salzman, Proc. Forty-Forth IEEE Holm Conf. On Electr. Cont. (1998) 220.

  • C.N. Neufeld C.N. Rieder (1995) IEEE Trans. Comp. Pack. Manufact. Technol. A 18 369

    Google Scholar 

  • A. Tonck F. Houze L. Boyer J.L. Loubet J.M. Georges (1991) J. Phys.: Cond. Matt. 3 5195

    Google Scholar 

  • S. Majumder, N.E. McGruer, G.G. Adams, A. Zavracky, P.M. Zavracky, R.H. Morrison and J. Krim, Proc. 44th IEEE Holm Conf. Electr. Cont. (1998) 127.

  • P.G. Slade E.D. Taylor (2002) IEEE Trans. Comp. Pack. Technol. 25 390

    Google Scholar 

  • E.J.J. Kruglick, Ph.D. dissertation, University of California, Berkeley, 1999.

  • C.H. Leung A. Lee B.J. Wang (1996) IEEE Trans. Comp. Pack. Manufact. Technol. A 19 346

    Google Scholar 

  • S. Schoft, J. Kindersberger and H. Lobl, Proc. 21st Conf. Electr. Cont. (2002) 230.

  • D. Hyman and M. Mehregany, Proc. 44th IEEE Holm Conf. Electr. Cont. (1998) 133.

  • J.P. Beale and R.F.W. Pease, Proc. 38th IEEE Holm Conf. Electr. Cont. (1992) 45.

  • I. Schiele B. Hillerich (1999) J. Micromech. Microeng. 9 146

    Google Scholar 

  • M. Raun and J. Shen, Proc. 47th IEEE Holm Conf. Electr. Cont. (2001) 224.

  • H. Hosaka, H. Kuwano and K. Yanagisawa, Proc. IEEE MEMS Conf. (1993) 12.

  • X. Lafontan C. Dufaza M. Robert G. Perez F. Pressecq (2000) Proc. SPIE 4175 149

    Google Scholar 

  • D. Becher, R. Chan, M. Hattendorf and M. Feng, Presented at the GaAs MANTECH Conf., San Diego, CA, 8–11 April, 2002.

  • J. Tao J.F. Chen N.W. Cheung C. Hu (1996) IEEE Trans. Electron Devices 43 800

    Google Scholar 

  • M.D. Pashley J.B. Pethica D. Tabor (1984) Wear 100 7

    Google Scholar 

  • M.D. Pashley J.B. Pethica (1985) J. Vac. Sci. Technol. A 3 757

    Google Scholar 

  • R.S. Dwyer-Joyce B.W. Drinkwater A.M. Quinn (2001) ASME J. Tribol. 123 8

    Google Scholar 

  • D. Maugis H.M. Pollock (1984) Acta Metal. 32 1323

    Google Scholar 

  • R. Budakian S.J. Putterman (2002) Phys. Rev. B 65 235429

    Google Scholar 

  • C. Poulain, L. Boyer, P. Sainsot, M.H. Maitournam, F. Houze, M. Leclercq, J.P. Guery and J.P. Charpentier, Proc. 41st IEEE Holm Conf. Electr. Cont. (1995) 147.

  • J.N. Israelachvili (1992) Intermolecular and Surface Forces Academic Press San Diego

    Google Scholar 

  • P.E. Marszalek W.J. Greenleaf H. Li A.F. Oberhauser J.M. Fernandez (2000) PNAS 97 6282

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.T. Patton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patton, S., Zabinski, J. Fundamental studies of Au contacts in MEMS RF switches. Tribol Lett 18, 215–230 (2005). https://doi.org/10.1007/s11249-004-1778-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-004-1778-3

Keywords

Navigation