Skip to main content
Log in

Fatigue Life Reduction in Mixed Lubricated Elliptical Contacts

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Highly loaded ball and rolling element bearings are often required to operate in the mixed elastohydrodynamic lubrication regime in which surface asperity contact occurs simultaneously during the lubrication process. Predicting performance of components operating in this regime is important as the high asperity contact pressures can significantly reduce the fatigue life of the interacting components. Rolling contact fatigue is one of the most dominant causes of failure of components operating in mixed lubrication regime. Contact fatigue begins with the initiation of microscopic fatigue cracks in the rolling contact surfaces or within the sub-surface regions due to cyclic shear stresses. Investigation of mixed lubrication effects on performance of machine components is of significant importance in order to understand and enhance their load carrying capacity. This article investigates the effects of mixed lubrication and surface roughness on machine components performance. Results from a mixed lubrication model are utilized to investigate the effects of different operating conditions on fatigue life of the components. Simple rough surfaces consisting of single hemispherical bump as well as complex rough surfaces consisting of a numerically generated 3D rough surface operating under mixed lubrication conditions are studied and results presented. The stress-based Ioannides and Harris model incorporating the fatigue limit is used to evaluate the fatigue life variation. Fast Fourier Transform (FFT) technique is used to significantly reduce the time required for the computation of internal stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a :

Half width of Hertzian contact across rolling direction (m)

A r :

Radius ratio (R y /R x )

b :

Half width of Hertzian contact along rolling direction (m)

E1, E2:

Modulus of elasticity of surface 1 and 2, respectively (Pa)

E′:

Equivalent elastic modulus (2/E′ =  (1−ν 21 )/E1 + (1−ν 22 )/E2)(Pa)

f :

Dimensionless complementary energy

G :

Material parameter (G =  αE′)(Pa)

h :

Film thickness (m)

H :

Dimensionless film thickness (hRx/b2)

h l :

Film thickness due to lubricant pressure

H l :

Dimensionless film thickness only due to the lubricant pressure (h l Rx/b2)

h o :

Constant in the film thickness equation

H o :

Dimensionless constant (h o Rx/b2)

h min :

Minimum film thickness (m)

H min :

Dimensionless minimum film thickness (hminRx/b2)

H s :

Dimensionless elastic deformation only due to the solid contact pressure

p :

Dimensional pressure (Pa)

P :

Dimensionless pressure (p/P H )

P H :

Maximum Hertzian pressure (Pa)

q x :

Volume flow rate per unit width in the rolling direction (m 2/s)

q :

Heat flux (W/m 2)

R x :

Reduced radius of curvature in x-direction (m)

R y :

Reduced radius of curvature in y-direction (m)

R q :

R.m.s roughness

S :

Slide-to-roll ratio S = 2(u1−u2)/(u1 + u2)

t :

Time (s)

u1,u2:

Velocities of surface 1 and 2, respectively, along rolling direction (m/s)

u s :

Sliding velocity (m/s)

U :

Dimensionless speed parameter

W :

Dimensionless total load

w :

External load (N)

zR :

Roelands viscosity coefficient

x, y, z:

Dimensional cartesian coordinates

X, Y, Z:

Dimensionless cartesian coordinates for mixed lubrication calculations

η:

Absolute viscosity of the lubricant (Pa· s)

η0 :

Absolute viscosity of the lubricant at p = 0 and constant temperature (Pa· s)

\(\bar{\eta}\) :

Dimensionless absolute viscosity of the lubricant (η/η0)

θ:

Dimensionless time ((u1 + u2)t/2/b)

κ:

Ellipticity parameter (a/b)

ν:

Poisson’s ratio

ρ:

Density of lubricant (kg/m3)

ρ0 :

Density of lubricant at p = 0 (kg/m3)

ρ s :

density of solid (kg/m3)

References

  1. Dowson, D., Higginson, G.R.: Elastohydrodynamic Lubrication. Pergamon Press (1966)

  2. Roelands, C.J.A., Vlugter, J., Waterman, H.: The viscosity-temperature-pressure relationship of lubricating oils and its correlation with chemical constitution. J. Basic Eng. 11, 601–610 (1963)

    Google Scholar 

  3. Stanley, H.M., Kato, T.: An FFT – based method for rough surface contact. J. Tribol. 119, 481–485 (1997)

    Google Scholar 

  4. Zhu, D., Cheng, H.S.: Effect of surface roughness on point contact EHL. J. Tribol. 110, 32–37 (1988)

    Google Scholar 

  5. Jiang, X., Hua, D.Y., Cheng, H.S., Ai, X., Lee S.C.: A mixed elastohydrodynamic lubrication model with asperity contact. J. Tribol. 121, 481–491 (1999)

    Google Scholar 

  6. Hu, Y., Zhu, D.: A full numerical solution to mixed lubrication in point contacts. J. Tribol. 122, 1–9 (2000)

    Article  Google Scholar 

  7. Zhao, J., Sadeghi, F., Hoeprich, M.H.: Analysis of EHL circular contact start up: Part I – mixed contact model with pressure and film thickness results. J. Tribol. 123, 67–74 (2001)

    Article  CAS  Google Scholar 

  8. Jane Wang, Q., Zhu, D., Cheng, H.S., Yu, T., Jiang, X., Liu, S.: Mixed lubrication analysis by macro-micro approach and a full-scale mixed EHL model. J. Tribol. 126, 81–91 (2004)

    Article  Google Scholar 

  9. Holmes M.J., Evans H.P., Hughes T.G., Snidle R.W.: Transient elastohydrodynamic point contact analysis using a new coupled differential deflexion method, Part 1: theory and validation. Proc. Instn. Mech. Eng. Part J, J. Eng. Trib. 217, 289–303 (2003)

    Google Scholar 

  10. Lundberg, G., Palmgren, A.: Dynamic capacity of rolling bearings. Acta Polytech.- Me. Eng. Ser. 1, 1–50 (1947)

    Google Scholar 

  11. Lundberg, G., Palmgren, A.: Dynamic capacity of roller bearings. Acta Polytech.- Me. Eng. Ser. 2, 1–32 (1952)

    Google Scholar 

  12. Weibull, W.: The Phenomenon of Rupture in Solids. Ingeniors VetenskapsAkademien Handlingar 153, 1–55 (1939)

    Google Scholar 

  13. Ioannides, E., Harris, T.A.: A new fatigue life model for rolling bearings. J. Tribol. 107, 367–378 (1985)

    Article  Google Scholar 

  14. Ioannides E., Bergling G., Gabelli A.: An Analytical formulation for the life of rolling bearings. Acta Polytechnica Scandinavia, Mech. Eng. Series 137, The Finnish Academy of Technology, Tekniikantie 12, FIN-02150 ESPP, Finland (1999)

  15. Lubrecht A.A., Jacobson, B.O., Ioannides, E.: Lundberg Palmgren Revisited. Rolling Element Bearings – Towards the 21st Century , 17–20 (1990)

  16. Tallian, T.E.: A unified model for rolling contact life prediction. J. Lubrication Technol. 104, 336–346 (1982)

    Article  Google Scholar 

  17. Schlicht, H., Schreiber, E., Zwirlein, O.: Fatigue and failure mechanism of bearings. IMechE London C285/86, 85–90 (1986)

    Google Scholar 

  18. Zaretsky, E.V.: Fatigue criterion to system design, Life and reliability. J. Propul. Power 3(1), 76–83 (1987)

    Article  Google Scholar 

  19. Tallian, T.E.: Simplifed contact fatigue life prediction model – Part I: Review of published models. J. Tribol. 114, 207–213 (1992)

    Article  CAS  Google Scholar 

  20. Barnsby, R., Harris, T., Ioannides, E., Littmann, W., Losche, T., Murakami, Y., Needelman, W., Nixon, H., Webster, M.: Life ratings for modern rolling bearings. Am. Soc. Mech. Eng. Pap. 98-TRIB-57, 3–83 (1998)

    Google Scholar 

  21. Kumar, A., Sadeghi, F., Krousgrill, C. M.: “Effects of Surface Roughness on Normal Contact Compression Response” Proceedings of Institution of Mechanical Engineers, Part J. J. Eng. Tribol. 220, 65–77 (2006)

Download references

Acknowledgments

The Authors would like to provide their deepest appreciations to the Sentient Corporation for their support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deolalikar, N., Sadeghi, F. Fatigue Life Reduction in Mixed Lubricated Elliptical Contacts. Tribol Lett 27, 197–209 (2007). https://doi.org/10.1007/s11249-007-9226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-007-9226-9

Keywords

Navigation