Skip to main content
Log in

The Pressure–Viscosity Coefficient of Several Ionic Liquids

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The choice of cation and anion in an ionic liquid (IL) as well as the design of ion side chains determine the fundamental properties of ILs, which permits creating tailor-made lubricants and lubricant additives. So, the study of the influence of molecular structure on thermophysical properties of ionic liquids is essential for their use in lubrication. Recent results from the literature, essentially based on ammonium, phosphonium, or imidazolium cations, are promising from the tribological point of view, but still new investigations should be performed, for example, in elastohydrodynamic lubrication (EHL), for which calculations of the universal pressure–viscosity coefficient, α film , and central thickness are needed. In this work viscosity and density data from the literature on broad pressure and temperature ranges for the ILs [C4C1im]PF6, [C4C1im]Tf2 N, [C4C1im]BF4, [C8C1im]PF6, [C8C1im]BF4, [C6C1im]PF6, and [C6C1im]Tf2 N are used to determine their α film values over a wide temperature range. The American Gear Manufacturers Association relation of the central thickness with the pressure viscosity coefficient is used to estimate the film-generating capability of these lubricants. Furthermore, an overview of the literature data on tribological and physical properties of the ionic liquids is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

T :

Temperature

p :

Pressure

η :

Dynamic viscosity

α(p):

Dowson and Higginson pressure–viscosity coefficient

α * :

Asymptotic isoviscous pressure coefficient

p iv ():

Asymptotic isoviscous pressure

p iv (p):

Isoviscous pressure

\( \alpha_{{film}} \) :

Universal pressure–viscosity coefficient

h :

Film thickness

U :

Rolling speed

k :

Parameter depending on surface geometry

β :

Temperature–viscosity coefficient

κ T :

Isothermal compressibility

π :

Internal pressure

γ :

Parameter depending on the chemical structure

References

  1. Jin, C.M., Ye, C., Phillips, B.S., Zabinski, J.S.: Polyethylene glycol functionalized dicationic ionic liquids with alkyl or polyfluoroalkyl substituents as high temperature lubricants. J. Mater. Chem. 16, 1529–1535 (2006)

    Article  Google Scholar 

  2. Spikes, H.A.: Sixty years of EHL. Lubr. Sci. 18, 265–191 (2006)

    Article  Google Scholar 

  3. Larsson, R., Kassfeldt, E., Byheden, A., Norrby, T.: Base Fluid Parameters for Elastohydrodynamic Lubrication and Friction Calculations and their Influence on Lubrication Capability. J. Synth. Lubr. 18, 183–198 (2001)

    Article  Google Scholar 

  4. Errichello, R.: Selecting oils with high pressure–viscosity coefficients increase bearing life by more than four times. Mach. Lubr. 200403 (2004). http://www.machinerylubrication.com/article_detail.asp?articleid=586

  5. Aderin, M., Johnston, G.J., Spikes, H.A.: The elastohydrodynamic properties of some advanced non hydrocarbon-based lubricants. Lubr. Eng. 48, 633–638 (1992)

    CAS  Google Scholar 

  6. Chang, H.S., Spikes, H.A., Bunemann, T.F.: The shear stress properties of ester lubricants in elastohydrodynamic contacts. J. Synth. Lubr. 9, 91–114 (2006)

    Article  Google Scholar 

  7. Bair, S., Liu, Y., Wang, Q.J.: The Pressure–Viscosity Coefficient for Newtonian EHL Film Thickness with General Piezoviscous Response. J. Tribol. 128, 624–631 (2006)

    Article  Google Scholar 

  8. Spikes, H.A.: A Thermodynamic Approach to Viscosity. Tribol. Trans. 33, 140–148 (1990)

    Article  CAS  Google Scholar 

  9. Hoglund, E.: Influence of lubricant properties on elastohydrodynamic lubrication. Wear 232, 176–184 (1999)

    Article  Google Scholar 

  10. Seabra, J. H. O.: Enhacing Gear Performance Through Bio-Lubricants. Presented in LUBMAT 08. 4–6 June 2008, San Sebastian

  11. Liu, W., Ye, C., Gong, Q., Wang, H., Wang, P.: Tribological performance of room-temperature ionic liquids as lubricants. Tribol. Lett. 13, 81–85 (2002)

    Article  Google Scholar 

  12. Ye, C., Liu, W., Chen, Y., Yu, L.: Room-temperature ionic liquids: a novel versatile lubricant. Chem. Comm. 2244–2245 (2001).

  13. Jiménez, A.E., Bermúdez, M.D.: Ionic liquids as lubricants for steel–aluminum contacts at low and elevated temperatures. Tribol. Lett. 26, 53–60 (2007)

    Article  Google Scholar 

  14. Jiménez, A.E., Bermúdez, M.D., Carrión, F.J., Martínez-Nicolás, G.: Room temperature ionic liquids as lubricant additives in steel-aluminium contacts: influence of sliding velocity, normal load and temperature. Wear 261, 347–359 (2006)

    Article  Google Scholar 

  15. Kamimura, H., Kubo, T., Minami, I., Mori, S.: Effect and mechanism of additives for ionic liquids as new lubricants. Trib. Int. 40, 620–625 (2007)

    Article  Google Scholar 

  16. Canongia-Lopes, J.N., Pádua, A.A.H.: Nanostructural organization in ionic liquids. J. Phys. Chem. B 110, 3330–3335 (2006)

    Article  Google Scholar 

  17. Qu, J., Truhan, J.J., Dai, S., Luo, H., Blau, P.J.: Ionic liquids with ammonium cations as lubricants or additives. Tribol. Lett. 22, 207–214 (2006)

    Article  Google Scholar 

  18. Minami, I., Watanabe, N., Nanao, H., Mori, S., Fukumoto, K., Ohno, H.: Improvement in the tribological properties of imidazolium-derived ionic liquids by additive technology. J. Synth. Lubr. 25, 45–55 (2008)

    Article  Google Scholar 

  19. Uerdingen, M., Hilgers, C.: Ionic Liquids as New Lubricating Base Oils. Presented in 16th International Colloquium Tribology, Lubricants, Materials and Lubrication Engineering, Stuttgart, Ostfildern, Germany, 15–17 January 2008

  20. Uerdingen, M., Treber, C., Balser, M., Schmitt, G., Werner, C.: Corrosion behaviour of ionic liquids. Green Chem. 7, 321–325 (2005)

    Article  Google Scholar 

  21. Wang, H., Lu, Q., Ye, C., Liu, W., Cui, Z.: Friction and wear behaviors of ionic liquids of alkylimidazolium hexafluorophosphates as lubricants for steel/steel contact. Wear 256, 44–48 (2004)

    Article  Google Scholar 

  22. Weng, L., Liu, X., Liang, Y., Xue, Q.: Effect of tetraalkylphosphonium based ionic liquids as lubricants on the tribological performance of a steel-on-steel system. Tribol. Lett. 26, 11–17 (2007)

    Article  Google Scholar 

  23. Jiménez, A.E., Bermúdez, M.D., Iglesias, P., Carrión, F.J., Martínez-Nicolás, G.: 1-N-alkyl-3-methylimidazolium ionic liquids as neat lubricants and lubricants additives in steel-aluminium contacts. Wear 260, 766–782 (2006)

    Article  Google Scholar 

  24. Liu, X., Zhou, F., Liang, Y., Liu, W.: Tribological performance of phosphonium based ionic liquids for an aluminum-on-steel system and opinions on lubrication mechanism. Wear 261, 1174–1179 (2006)

    Article  Google Scholar 

  25. Crosthwaite, J.M., Muldoon, M.J., Dixon, J.K., Anderson, J.L., Brennecke, J.F.: Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J Chem. Thermodyn. 37, 559–568 (2005)

    Article  Google Scholar 

  26. Gardas, R.L., Coutinho, J.A.P.: A Group Contribution Method for Viscosity Estimation of Ionic Liquids. Fluid Phase Equilib. 266, 195–201 (2008)

    Article  Google Scholar 

  27. Greaves, T.L., Drummond, C.J.: Protic ionic liquids: properties and applications. Chem. Rev. 108, 206–237 (2008)

    Article  CAS  Google Scholar 

  28. Deetlefs, M., Hardacre, C., Nieuwenhuyzen, M., Pádua, A.A.H., Sheppard, O., Soper, A.K.: Liquid structure of the ionic liquid 1, 3-dimethylimidazolium bis{(trifluoromethyl)sulfonyl}amide. J. Phys. Chem. B 110, 12055–12061 (2006)

    Article  Google Scholar 

  29. Hunt, P.A., Gould, I.R., Kirchner, B.: The structure of imidazolium-based ionic liquids: Insights from ion-pair interactions. Aust. J. Chem. 60, 9–14 (2007)

    Article  Google Scholar 

  30. Reddy, R.G., Zhang, Z., Arenas, M.F., Blake, D.M.: Thermal stability and corrosivity of ionic liquids as thermal energy storage media. High Temp. Mater. Process. 22, 87–94 (2003)

    Google Scholar 

  31. Ohno, H., Yoshizawa, M.: Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles. Solid State Ionic 154–155, 303–309 (2002)

    Article  Google Scholar 

  32. Susan, M. A. B. H., Noda, A., Mitsushima, S., Watanabe, M.: Brønsted acid–base ionic liquids and their use as new materials for anhydrous proton conductors. Chem. Commum. 938–939 (2003).

  33. Zhang, S., Sun, N., He, X., Lu, X., Zhang, J.: Physical properties of ionic liquids: database and evaluation. Data J. Phys. Chem. Ref. 35, 1475–1517 (2006)

    Article  Google Scholar 

  34. Bagno, A., Butts, C., Chiappe, C., D’amico, F., Lord, J.C.D., Pieraccini, D., Rastrelli, F.: The effect of the anion on the physical properties of trihalide-based N, N-dialkylimidazolium ionic liquids. Org. Biomol. Chem. 3, 1624–1630 (2005)

    Article  Google Scholar 

  35. Carvalho, P.J., Freire, M.G., Marrucho, I.M., Queimada, A.J., Coutinho, J.A.P.: Surface tension for 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. J. Chem. Eng. Data 53, 1346–1350 (2008)

    Article  Google Scholar 

  36. Freire, M.G., Carvalho, P.J., Fernandes, A.M., Marrucho, I.M., Queimada, A.J., Coutinho, J.A.P.: Surface tensions of imidazolium based ionic liquids: anion, cation, temperature and water effect. J. Colloid Interface Sci. 314, 621–630 (2007)

    Article  CAS  Google Scholar 

  37. Greaves, T.L., Weerawardena, A., Fong, C., Krodkiewska, I., Drummond, C.: Protic ionic liquids: solvents with tunable phase behavior and physicochemical properties. J. Phys. Chem. B 110, 22479–22487 (2006)

    Article  Google Scholar 

  38. Law, G., Watson, P.R.: Surface tension measurements of n-alkylimidazolium ionic liquids. Langmuir 17, 6138–6141 (2001)

    Article  Google Scholar 

  39. Martino, W., Mora, J.F.D.L., Yoshida, Y., Saito, G.: Surface tension measurements of highly conducting ionic liquids. Green Chem. 8, 390–397 (2006)

    Article  Google Scholar 

  40. Tong, J., Hong, M., Guan, W., Li, J., Yang, J.: Studies on the thermodynamics properties of new ionic liquids: 1-methyl-3-pentylimidazolium salts containing metal of group III. J. Chem. Thermodyn. 38, 1416–1421 (2006)

    Article  Google Scholar 

  41. Tong, J., Liu, Q., Zhang, P., Yang, J.: Surface tension and density of 1-methyl-3-hexylimidazolium Chloroindium. J. Chem. Eng. Data 52, 1497–1500 (2007)

    Article  Google Scholar 

  42. Qu, J., Truhan, J. J., Dai, S., Luo, H., Blau, P. J.: Ionic liquids as novel lubricants and additives. Presented at Diesel Engine Efficiency and Emissions Research (DEER) Conference, Detroit, USA, 13–16 August 2007. http://www1.eere.energy.gov/vehiclesandfuels/resources/proceedings/2007_deer_presentations.html

  43. Rebelo, L.P.N., Canongia-Lopes, J.N., Esperança, J.M.S.S., Filipe, E.: On the critical temperature, normal boiling point and vapor pressure of ionic liquids. J. Phys. Chem. B 109, 6040–6043 (2005)

    Article  Google Scholar 

  44. Minami, I., Kita, M., Kubo, T., Nanao, H., Mori, S.: The tribological properties of ionic liquids composed of trifluorotris(pentafluoroethyol) phosphate as a hydrophobic anion. Tribol. Lett. 30, 215–223 (2008)

    Article  Google Scholar 

  45. Mu, Z., Zhou, F., Zhang, S., Liang, Y., Liu, W.: Effect of the functional groups in ionic liquid molecules on the friction and wear behavior of aluminum alloy in lubricated aluminum-on-steel contact. Trib. Int. 38, 725–731 (2005)

    Article  Google Scholar 

  46. Liu, X., Zhou, F., Liang, Y., Liu, W.: Benzotriazole as the additive for ionic liquid lubricant: one pathway towards actual application of ionic liquids. Tribol. Lett. 23, 191–196 (2006)

    Article  Google Scholar 

  47. Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts part III. Fully flooded results. J. Lubr. Technol. (ASME Trans.) 99, 264–276 (1977)

    CAS  Google Scholar 

  48. Liu, Y., Wang, Q.J., Wang, W., Hu, Y., Zhu, D., Krupka, I., Hartl, M.: EHL simulation using the free-volume viscosity model. Tribol. Lett. 23, 27–37 (2006)

    Article  Google Scholar 

  49. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate. J. Chem. Eng. Data 51, 1161–1167 (2006)

    Article  Google Scholar 

  50. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate: viscosity and density relationships in ionic liquids. J. Chem. Eng. Data 52, 2425–2430 (2007)

    Article  CAS  Google Scholar 

  51. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl–3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Chem. Eng. Data 52, 1080–1085 (2007)

    Article  Google Scholar 

  52. Harris, K.R., Woolf, L.A., Kanakubo, M.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-buthyl-3-methylimidazolium hexafluorophosphate. J. Chem. Eng. Data 50, 1777–1782 (2005)

    Article  Google Scholar 

  53. Tomida, D., Kumagai, A., Kenmochi, A., Qiao, K., Yokoyama, C.: Viscosity of 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-octyl-3-methylimidazolium hexafluorophosphate at high pressure. J. Chem. Eng. Data 52, 577–579 (2007)

    Article  Google Scholar 

  54. Tomida, D., Kumagai, A., Qiao, K., Yokoyama, C.: Viscosity of [bmim][PF6] and [bmim][BF4] at high pressure. Int. J. Thermophys. 27, 39–47 (2006)

    Article  Google Scholar 

  55. Kandil, M.E., Marsh, K.N., Goodwin, A.R.H.: Measurement of the viscosity, density, and electrical conductivity of 1-hexyl-3-methylimidazolium bis(trifluorosulfonyl)imide at temperatures between (288 and 433) K and pressures below 50 MPa. J. Chem. Eng. Data 52, 2382–2387 (2007)

    Article  CAS  Google Scholar 

  56. Bair, S.: Reference liquids for quantitative elastohydrodynamics: selection and rheological characterization. Tribol. Lett. 22, 197–206 (2006)

    Article  Google Scholar 

  57. Bair, S.: High-pressure rheology for quantitative elastohydrodynamics. Elsevier, Amsterdam (2007)

    Google Scholar 

  58. Pensado, A.S., Comuñas, M.J.P., Fernández, J.: Pressure–Viscosity Coefficient in Lubrication. Presented in Ibertrib, Bilbao, Spain, 21–22 June 2007

  59. Gold, P.W., Schmidt, A., Dicke, H., Loos, J., Assmann, C.: Viscosity–pressure–temperature behaviour of mineral and synthetic oils. Synth. Lubr. 18, 51–79 (2001)

    Article  Google Scholar 

  60. Tokuda, H., Tsuzuki, S., Susan, M.A.B.H., Hayamizu, K., Watanabe, M.: How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J. Phys. Chem. B 110, 19593–19600 (2006)

    Article  Google Scholar 

  61. Triolo, A., Russina, O., Bleif, H.J., Cola, E.D.: Nanoscale segregation in room temperature ionic liquids. J. Phys. Chem B 111, 4641–4644 (2007)

    Article  Google Scholar 

  62. Bronshteyn, L.A., Kreiner, J.H.: Energy efficiency of industrial oils. Trib. Trans. 42, 771–776 (1999)

    Article  Google Scholar 

  63. Roland, C. M., Bair, S., Casalini, R.: Thermodynamic scaling of the viscosity of van der Waals, H-bonded, and ionic liquids. J. Chem. Phys. 125, 124508/1–124508/6 (2006).

  64. Roland, C.M., Hensel-Bielowka, S., Paluch, M., Casalini, R.: Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure. Rep. Prog. Phys. 68, 1405–1478 (2005)

    Article  Google Scholar 

  65. Pensado, A.S., Pádua, A.A.H., Comuñas, M.J.P., Fernández, J.: Relationship between viscosity coefficients and volumetric properties using a scaling concept for molecular and ionic liquids. J. Phys. Chem. B 112, 5563–5574 (2008)

    Article  Google Scholar 

  66. Pensado, A.S., Comuñas, M.J.P., Fernández, J.: Relationship between viscosity coefficients and volumetric properties: measurements and modeling for pentaerythritol esters. Ind. Eng. Chem. Res. 45, 9171–9183 (2006)

    Article  Google Scholar 

  67. Fandiño, O., García, J., Comuñas, M.J.P., López, E.R., Fernández, J.: PρT measurements and EoS predictions of ester lubricants up to 45 MPa. Ind. Eng. Chem. Res. 45, 1172–1182 (2006)

    Article  Google Scholar 

  68. Fandiño, O., Pensado, A.S., Lugo, L., Comuñas, M.J.P., Fernández, F.: Compressed liquid densities of squalane and pentaerythritol tetra(2-ethylhexanoate). J. Chem. Eng. Data 50, 939–946 (2005)

    Article  Google Scholar 

  69. Fandiño, O., Pensado, A.S., Lugo, L., López, E.R., Fernández, F.: Volumetric behaviour of the environmentally compatible lubricants pentaerythritol tetraheptanoate and pentaerythritol tetranonanoate at high pressures. Green Chem. 7, 775–783 (2005)

    Article  Google Scholar 

  70. Gomez-de-Azevedo, R., Esperança, J. M. S. S., Szyslowski, J., Visak, Z. P., Pires, P. F., Guedes, H. J. R., Rebelo, L. P. N.: Thermophysical and thermodynamic properties of ionic liquids over an extended pressure range: [bmim][NTf2] and [hmim][NTf2]. J. Chem. Thermodyn. 37, (2005).

  71. Fandiño, O., Comuñas, M.J.P., Lugo, L., López, E.R., Fernández, J.: Density measurements under pressure for mixtures of pentaerythritol ester lubricants. Analysis of a density–viscosity relationship. J. Chem. Eng. Data 52, 1429–1436 (2007)

    Article  Google Scholar 

  72. Sanmamed, Y.A., González-Salgado, D., Troncoso, J., Cerdeiriña, C.A., Romaní, L.: Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilib. 252, 96–102 (2007)

    Article  Google Scholar 

  73. Kamimura, H., Chiba, T., Watanabe, N., Kubo, T., Nanao, H., Minami, I., Mori, W.: Effects of carboxylic acids on friction and wear reducing properties for alkylmethylimidazolium derived ionic liquids. Trib. Online 1, 40–43 (2006)

    Article  Google Scholar 

  74. Ignatév, N.V., Welz-Biermann, U., Kucheryna, A., Bissky, G., Willner, H.: New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions. J. Fluor. Chem. 126, 1150–1159 (2005)

    Article  Google Scholar 

  75. Rodríguez, H., Brennecke, J.F.: Temperature and composition dependence of the density and viscosity of binary mixtures of water + ionic liquid. J. Chem. Eng. Data 51, 2145–2155 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The participation of A.S.P. was made possible by an Ánxeles Alvariño fellowship from DXID, Xunta de Galicia. J.F. also acknowledges the support of Consellería de Educación e Ordenación Universitaria of Xunta de Galicia. The authors are grateful to Prof. Agílio Pádua Université Blaise Pascal Clermont-Ferrand, France, for his significant suggestions and kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pensado, A.S., Comuñas, M.J.P. & Fernández, J. The Pressure–Viscosity Coefficient of Several Ionic Liquids. Tribol Lett 31, 107–118 (2008). https://doi.org/10.1007/s11249-008-9343-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9343-0

Keywords

Navigation