Skip to main content
Log in

A Possible Link Between Macroscopic Wear and Temperature Dependent Friction Behaviors of MoS2 Coatings

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Studies to explore the nature of friction, and in particular thermally activated friction in macroscopic tribology, have lead to a series of experiments on thin coatings of molybdenum disulfide. Coatings of predominately molybdenum disulfide were selected for these experiments; five different coatings were used: MoS2/Ni, MoS2/Ti, MoS2/Sb2O3, MoS2/C/Sb2O3, and MoS2/Au/Sb2O3. The temperatures were varied over a range from −80 °C to 180 °C. The friction coefficients tended to increase with decreasing temperature. Activation energies were estimated to be between 2 and 10 kJ/mol from data fitting with an Arrhenius function. Subsequent room temperature wear rate measurements of these films under dry nitrogen conditions at ambient temperature demonstrated that the steady-state wear behavior of these coatings varied dramatically over a range of K = 7 × 10−6 to 2 × 10−8 mm3/(Nm). It was further shown that an inverse relationship between wear rate and the sensitivity of friction coefficient with temperature exists. The highest wear-rate coatings showed nearly athermal friction behavior, while the most wear resistant coatings showed thermally activated behavior. Finally, it is hypothesized that thermally activated behavior in macroscopic tribology is reserved for systems with stable interfaces and ultra-low wear, and athermal behavior is characteristic to systems experiencing gross wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Michael, P., Rabinowicz, E., Iwasa, Y.: Friction and wear of polymeric materials at 293-k, 77-k and 4.2-k. Cryogenics 31, 695–704 (1991). doi:10.1016/0011-2275(91)90230-T

    Article  Google Scholar 

  2. Theiler, G., Hubner, W., Gradt, T., Klein, P., Friedrich, K.: Friction and wear of ptfe composites at cryogenic temperatures. Tribol. Int. 35, 449–458 (2002). doi:10.1016/S0301-679X(02)00035-X

    Article  CAS  Google Scholar 

  3. Hubner, W., Gradt, T., Schneider, T., Borner, H.: Tribological behaviour of materials at cryogenic temperatures. Wear 216, 150–159 (1998). doi:10.1016/S0043-1648(97)00187-7

    Article  CAS  Google Scholar 

  4. Burris, D.L., Perry, S.S., Sawyer, W.G.: Macroscopic evidence of thermally activated friction with polytetrafluoroethylene. Tribol. Lett. 27, 323–328 (2007). doi:10.1007/s11249-007-9237-6

    Article  CAS  Google Scholar 

  5. McCook, N.L., Burris, D.L., Dickrell, P.L., Sawyer, W.G.: Cryogenic friction behavior of ptfe based solid lubricant composites. Tribol. Lett. 20, 109–113 (2005). doi:10.1007/s11249-005-8300-4

    Article  CAS  Google Scholar 

  6. Ostrovskaya, Y., Yukhno, T., Gamulya, G., Vvedenskij, Y., Kuleba, V.: Low temperature tribology at the b. Verkin institute for low temperature physics & engineering (historical review). Tribol. Int. 34, 265–276 (2001). doi:10.1016/S0301-679X(01)00010-X

    Article  CAS  Google Scholar 

  7. Yukhno, T.P., Vvedensky, Y.V., Sentyurikhina, L.N.: Low temperature investigations on frictional behaviour and wear resistance of solid lubricant coatings. Tribol. Int. 34, 293–298 (2001). doi:10.1016/S0301-679X(01)00013-5

    Article  CAS  Google Scholar 

  8. Zhao, X., Hamilton, M., Sawyer, W.G., Perry, S.S.: Thermally activated friction. Tribol. Lett. 27, 113–117 (2007)

    Google Scholar 

  9. Michael, P.C., Rabinowicz, E., Iwasa, Y.: Thermal activation in boundary lubricated friction. Wear 193, 218–225 (1996). doi:10.1016/0043-1648(95)06722-1

    Article  CAS  Google Scholar 

  10. Dickrell, P.L., Pal, S.K., Bourne, G.R., Muratore, C., Voevodin, A.A., Ajayan, P.M., et al.: Tunable friction behavior of oriented carbon nanotube films. Tribol. Lett. 24, 85–90 (2006). doi:10.1007/s11249-006-9162-0

    Article  CAS  Google Scholar 

  11. Friedrich, K., Kargerkocsis, J., Lu, Z.: Effects of steel counterface roughness and temperature on the friction and wear of pe(e)k composites under dry sliding conditions. Wear 148, 235–247 (1991). doi:10.1016/0043-1648(91)90287-5

    Article  CAS  Google Scholar 

  12. Pleskachevsky, Y.M., Smurugov, V.A.: Thermal fluctuations of ptfe friction and transfer. Wear 209, 123–127 (1997). doi:10.1016/S0043-1648(97)00034-3

    Article  CAS  Google Scholar 

  13. Blanchet, T., Kennedy, F.: Sliding wear mechanism of polytetrafluoroethylene (ptfe) and ptfe composites. Wear 153, 229–243 (1992). doi:10.1016/0043-1648(92)90271-9

    Article  CAS  Google Scholar 

  14. McLaren, K., Tabor, D.: Visco-elastic properties and friction of solids—friction of polymers—influence of speed and temperature. Nature 197, 856–858 (1963)

    Article  CAS  Google Scholar 

  15. Pooley, C.M., Tabor, D.: Friction and molecular structure—behavior of some thermoplastics. Proc. R. Soc. Lond. A-Math Phys. Sci. 329, 251–274 (1972)

    Google Scholar 

  16. Tanaka, K., Uchiyama, Y., Toyooka, S.: Mechanism of wear of poytetrafluoroethylene. Wear 23, 153–172 (1973). doi:10.1016/0043-1648(73)90081-1

    Article  CAS  Google Scholar 

  17. Burton, J., Taborek, P., Rutledge, J.: Temperature dependence of friction under cryogenic conditions in vacuum. Tribol. Lett. 23, 131–137 (2006). doi:10.1007/s11249-006-9115-7

    Article  CAS  Google Scholar 

  18. Dvorak, S.D., Wahl, K.J., Singer, I.L.: In situ analysis of third body contributions to sliding friction of a pb-mo-s coating in dry and humid air. Tribol. Lett. 28, 263–274 (2007). doi:10.1007/s11249-007-9270-5

    Article  CAS  Google Scholar 

  19. Haltner, A.J., Oliver, C.S.: Effect of water vapor on friction of molybdenum disulfide. Ind Eng Chem Fundam 5, 348–355 (1966)

    Article  CAS  Google Scholar 

  20. Lavik, M., Haltner, A.J., Spalvins, T.: Discussion of deposition of mos2 films by physical sputtering and their lubrication properties in vacuum. Asle Trans. 12, 41 (1969)

    Google Scholar 

  21. Voevodin, A.A., Fitz, T.A., Hu, J.J., Zabinski, J.S.: Nanocomposite tribological coatings with “Chameleon” surface adaptation. J. Vac. Sci. Technol. A 20, 1434–1444 (2002)

    Article  CAS  Google Scholar 

  22. Voevodin, A.A., Zabinski, J.S.: Nanocomposite and nanostructured tribological materials for space applications. Compos. Sci. Technol. 65, 741–748 (2005)

    CAS  Google Scholar 

  23. Voevodin, A.A., Zabinski, J.S., Muratore, C.: Recent advances in hard, tough, and low friction nanocomposite coatings. Tsinghua Sci. Technol. 10, 665–679 (2005). doi:10.1016/S1007-0214(05)70135-8

    Article  CAS  Google Scholar 

  24. Zabinski, J.S., Donley, M.S., Walck, S.D., Schneider, T.R., Mcdevitt, N.T.: The effects of dopants on the chemistry and tribology of sputter-deposited mos2 films. Tribol. Trans. 38, 894–904 (1995). doi:10.1080/10402009508983486

    Article  CAS  Google Scholar 

  25. Schmitz, T., Action, J., Ziegert, J., Sawyer, W.: The difficulty of measuring low friction: uncertainty analysis for friction coefficient measurements. Tribol. Trans. 127, 673–678 (2005). doi:10.1115/1.1843853

    Article  Google Scholar 

  26. Schmitz, T., Action, J., Burris, D., Ziegert, J., Sawyer, W.: Wear-rate uncertainty analysis. J Tribol-Trans Asme 126, 802–808 (2004). doi:10.1115/1.1792675

    Article  Google Scholar 

  27. Williams, J.: Engineering tribology, p. 488. Oxford University Press, Oxford, New York (1994)

    Google Scholar 

  28. Wahl, K.J., Dunn, D.N., Singer, I.L.: Wear behavior of pb-mo-s solid lubricating coatings. Wear 230, 175–183 (1999). doi:10.1016/S0043-1648(99)00100-3

    Article  CAS  Google Scholar 

  29. Zabinski, J.S., Bultman, J.E., Sanders, J.H., Hu, J.J.: Multi-environmental lubrication performance and lubrication mechanism of mos2/sb2o3/c composite films. Tribol. Lett. 23, 155–163 (2006). doi:10.1007/s11249-006-9057-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is supported by an AFOSR-MURI grant FA9550-04-1-0367. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Air Force Office of Scientific Research. The authors would also like to thank Profs. Tony Schmitz and John Ziegert for their help in designing the reciprocating tribometer used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Gregory Sawyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilton, M.A., Alvarez, L.A., Mauntler, N.A. et al. A Possible Link Between Macroscopic Wear and Temperature Dependent Friction Behaviors of MoS2 Coatings. Tribol Lett 32, 91–98 (2008). https://doi.org/10.1007/s11249-008-9366-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9366-6

Keywords

Navigation