Skip to main content
Log in

Hybrid Atomistic/Continuum Study of Contact and Friction Between Rough Solids

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A hybrid simulation method is used to study the effect of atomic structure and self-affine roughness on non-adhesive contact and friction between two-dimensional surfaces. Rough-on-flat and rough-on-rough contact are compared as a function of system size up to several micrometers. In order to contrast elastic and plastic behavior, interactions within the deformable substrate are either harmonic or Lennard-Jones. The ratio of lattice constants in the solids is varied to examine the effect of commensurability. In all cases the true area of contact rises linearly with load, but the slope is much larger than expected from continuum calculations. These calculations considered a continuous distribution of surface heights that is appropriate for large scales, rather than the discrete height distribution of the crystalline surfaces used here. The ratio of contact area to load depends on the ratio of lattice constants in the solids and varies with system size in small systems that deform plastically. While some dislocations are observed, plasticity is dominated by an asperity flattening mechanism where surface atoms are displaced into a lower layer. The kinetic friction rises linearly with load and is independent of system size, as predicted by Amontons’s laws. Variations in friction with commensurability are smaller for rough surfaces than for flat surfaces, because most of the contact area is in small patches. Asperity flattening increases patch sizes and thus the effect of commensurability on friction. Rough-on-rough contact leads to additional friction associated with the local slope of the contacting regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Note that using the non-linear Lagrangian strain tensor, (u i,j + u j,i + u k,i u k,j)/2, at lowest order does not yield all of the terms for the diagonal stress components in Eq. 3. However, it does yield the quadratic term for the off-diagonal stress, and with ratios of coefficients that are nearly consistent with those determined below.

  2. These exponents are reduced in magnitude by unity from the values in Refs. [43, 44] because of the reduction from 3D to 2D.

  3. In principal there may be a logarithmic dependence on velocity, but the prefactor is expected to be proportional to temperature (Ref. [31]) and should be negligible for the low T considered here.

References

  1. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1986)

    Google Scholar 

  2. Greenwood, J.A.: A unified theory of surface roughness. Proc. R. Soc. Lond. A 393, 133–157 (1984)

    Article  ADS  Google Scholar 

  3. Meakin, P.: Fractals, Scaling and Growth Far from Equilibrium. Cambridge, Cambridge (1998)

    MATH  Google Scholar 

  4. Krim, J., Palasantzas, G.: Experimental observation of self-affine scaling and kinetic roughening at sub-micron lengthscales. Int. J. Mod. Phys. B 9, 599–632 (1995)

    Article  ADS  CAS  Google Scholar 

  5. Johnson, K.L.: Contact Mechanics. Cambridge, New York (1985)

    MATH  Google Scholar 

  6. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. A 295, 300–319 (1966)

    Article  ADS  CAS  Google Scholar 

  7. Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35, 87–111 (1975)

    Article  Google Scholar 

  8. Polycarpou, A.A., Etsion, I.: Analytical approximations in modeling contacting rough surfaces. ASME J. Tribol. 121, 234–239 (1999)

    Article  Google Scholar 

  9. Persson, B.N.J.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87, 116101 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  10. Hyun, S., Pei, L., Molinari, J.-F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, 026117 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Campañá, C., Müser, M.H.: Contact mechanics of real vs. randomly rough surfaces: a Green’s function molecular dynamics study. Europhys. Lett. 77, 38005 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Hyun, S., Robbins, M.O.: Elastic contact between rough surfaces: effect of roughness at large and small wavelengths. Tribol. Int. 40, 1413–1422 (2007)

    Article  CAS  Google Scholar 

  13. Ciavarella, M., Murolo, C., Demelio, G.: On the elastic contact of rough surfaces: numerical experiments and comparisons with recent theories. Wear 261, 1102–1113 (2006)

    Article  CAS  Google Scholar 

  14. Carbone, G., Bottiglione, F.: Asperity contact theories: do they predict linearity between contact area and load?. J. Mech. Phys. Solids 56, 2555–2572 (2008)

    Article  ADS  MATH  Google Scholar 

  15. Pei, L., Hyun, S., Molinari, J.-F., Robbins, M.O.: Finite element modeling of elasto-plastic contact between rough surfaces. J. Mech. Phys. Sol. 53, 2385–2409 (2005)

    Article  MATH  ADS  CAS  Google Scholar 

  16. Gao Y.F., Bower A.F. (2005) Elastic-plastic contact of a rough surface with Weierstrass profile. Proc. R. Soc. A 462:319–348

    Article  ADS  MathSciNet  Google Scholar 

  17. Polonsky, I.A., Keer, L.M.: Scale effects of elastic-plastic behavior of microscopic asperity contacts. ASME J. Tribol. 118, 335–340 (1996)

    Article  Google Scholar 

  18. Hutchinson, J.W.: Plasticity at the micron scale. Int. J. Solids Struct. 37, 225–238 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)

    Article  PubMed  ADS  CAS  Google Scholar 

  20. Luan, B.Q., Robbins, M.O.: Contact of single asperities with varying adhesion: comparing continuum mechanics to atmoistic simulations. Phys. Rev. E 74, 02611 (2006)

    Google Scholar 

  21. Hirano, M., Shinjo, K.: Atomistic locking and friction. Phys. Rev. B 41, 11837–11851 (1990)

    Article  ADS  CAS  Google Scholar 

  22. Müser, M.H., Wenning, L., Robbins, M.O.: Simple microscopic theory of Amontons’s laws for static friction. Phys. Rev. Lett. 86, 1295–1298 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  23. Müser, M.H.: Dry friction between flat surfaces: wearless multistable elasticity vs. material transfer and plastic deformation. Tribol. Lett. 10, 15–22 (2001)

    Article  Google Scholar 

  24. Müser, M.H., Urbakh, M., Robbins, M.O.: Statistical mechanics of static and low-velocity kinetic friction. Adv. Chem. Phys. 126, 187–272 (2003)

    Article  Google Scholar 

  25. Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W. M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)

    Article  PubMed  ADS  CAS  Google Scholar 

  26. Hirano, M., Shinjo, K., Kaneko, R., Murata, Y.: Observation of superlubricity by scanning tunneling microscopy. Phys. Rev. Lett. 78, 1448–1451 (1997)

    Article  ADS  CAS  Google Scholar 

  27. Krim, J., Solina, D.H., Chiarello, R.: Nanotribology of a Kr monolayer: a quartz-crystal microbalance study of atomic-scale friction. Phys. Rev. Lett. 66, 181–184 (1991)

    Article  PubMed  ADS  CAS  Google Scholar 

  28. Dietzel, D., Ritter, C., Möninghoof, T., Fuchs, H., Schirmeisen, A., Schwarz, U.D.: Frictional duality observed during nanoparticle sliding. Phys. Rev. Lett. 101, 125505 (2008)

    Article  PubMed  ADS  CAS  Google Scholar 

  29. Martin, J.M., Donnet, C., Mogne, T.L., Epicier, T.: Superlubricity of molybdenum disulphide. Phys. Rev. B 48, 10583–10586 (1993)

    Article  ADS  CAS  Google Scholar 

  30. He, G., Müser, M.H., Robbins, M.O.: Adsorbed layers and the origin of static friction. Science 284, 1650–1652 (1999)

    Article  PubMed  ADS  CAS  Google Scholar 

  31. He, G., Robbins, M.O.: Simulations of the kinetic friction due to adsorbed molecules. Tribol. Lett. 10, 7–14 (2001)

    Article  CAS  Google Scholar 

  32. Luan, B., Hyun, S., Robbins, M.O., Bernstein, N.: Multiscale modeling of two dimensional rough surface contacts. In: Wahl, K.J., Huber, N., Mann, A.B., Bahr, D.F., Cheng, Y.-T. (eds.) Fundamentals of Nanoindentation and Nanotribology, vol. 841, p. R7.4. Materials Research Society, Warrendale (2005)

    Google Scholar 

  33. Tartaglino, U., Samoilov, V.N., Persson, B.N.J.: Role of surface roughness in superlubricity. J. Phys. Condens. Matter. 18, 4143–4160 (2006)

    Article  ADS  CAS  Google Scholar 

  34. Luan, B.Q., Hyun, S., Molinari, J.F., Bernstein, N., Robbins, M.O.: Multiscale modeling of two-dimensional contacts. Phys. Rev. E 74, 046710 (2006)

    Article  ADS  CAS  Google Scholar 

  35. Hughes T.J.R., Belytschko T. (1983) A precise of developments in computational methods for transient analysis. J. Appl. Mech. 50:1033

    Article  MATH  Google Scholar 

  36. Voss, R.F., Random fractal forgeries. In: Earnshaw, R.A. (ed.) Fundamental Algorithms in Computer Graphics, p. 805. Springer-Verlag, Berlin (1985)

    Google Scholar 

  37. Yang, C., Persson, B.N.J.: Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact. Phys. Rev. Lett. 100, 024303 (2008)

    Article  PubMed  ADS  CAS  Google Scholar 

  38. Yang, C., Persson, B.N.J.: Contact mechanics: contact area and interfacial separation from small contact to full contact. J. Phys.: Condens. Matter. 20, 215214 (2008)

    Article  ADS  CAS  Google Scholar 

  39. Webster, N.M., Sayles, R.S.: A numerical model for the elastic frictionless contact of real rough surfaces. J. Tribol. 108, 314–320 (1986)

    Article  Google Scholar 

  40. Ciavarella, M., Demelio, G., Barber, J.R., Jang, Y.H.: Linear elastic contact of the Weierstrass profile. Proc. R. Soc. Lond. A 456, 387–405 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. Manners, W., Greenwood, J.A.: Some observations on Persson’s diffusion theory of elastic contact. Wear 261, 600–610 (2006)

    Article  CAS  Google Scholar 

  42. Müser, M.H.: Rigorous field-theoretical approach to the contact mechanics of rough elastic solids. Phys. Rev. Lett. 100, 055504 (2008)

    Article  PubMed  ADS  CAS  Google Scholar 

  43. Persson, B.N.J.: On the elastic energy and stress correlation in the contact between elastic solids with randomly rough surfaces. J. Phys.: Condens. Matter. 20, 312001 (2008)

    Article  ADS  CAS  Google Scholar 

  44. Campañá, C., Müser, M.H., Robbins, M.O.: Elastic contact between self-affine surfaces: comparison of numerical stress and contact correlation functions with analytic predictions. J. Phys.: Condens. Matter. 20, 354013 (2008)

    Article  CAS  Google Scholar 

  45. Miller, R.E., Shilkrot, L.E., Curtin, W.A.: A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films. Acta Mater. 52, 271–284 (2004)

    Article  CAS  MathSciNet  Google Scholar 

  46. Watts, E.T., Krim, J., Widom, A.: Experimental observation of interfacial slippage at the boundary of molecularly thin films with gold substrates. Phys. Rev. B 41, 3466–3472 (1990)

    Article  ADS  Google Scholar 

  47. Cieplak, M., Smith, E.D., Robbins, M.O.: Molecular origins of friction: the force on adsorbed layers. Science 265, 1209–1212 (1994)

    Article  PubMed  ADS  CAS  Google Scholar 

  48. Braun, O.M., Kivshar, Y.S.: Nonlinear dynamics of the Frenkel-Kontorova model. Phys. Rep. 306, 1–108 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  49. Steele, W.A.: The physical interaction of gases with crystalline solids. I. Gas-solid energies and properties of isolated absorbed atoms. Surf. Sci. 36, 317–352 (1973)

    Article  ADS  CAS  Google Scholar 

  50. Persson, B.N.J., Siveback, I.M., Samoilov, V.N., Zhao, K., Volokitin, A.I., Zhang, Z.: On the origin of Amontons’ friction law. J. Phys.: Condens. Matter. 20, 395006 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. DMR-0454947. The authors are grateful to Noam Bernstein, Sangil Hyun, and Jean-Francois Molinari for their collaboration in developing the code used here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark O. Robbins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luan, B., Robbins, M.O. Hybrid Atomistic/Continuum Study of Contact and Friction Between Rough Solids. Tribol Lett 36, 1–16 (2009). https://doi.org/10.1007/s11249-009-9453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9453-3

Keywords

Navigation