Skip to main content
Log in

Heat Treated NiP–SiC Composite Coatings: Elaboration and Tribocorrosion Behaviour in NaCl Solution

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Tribocorrosion behaviour of heat-treated NiP and NiP–SiC composite coatings was investigated in a 0.6 M NaCl solution. The tribocorrosion tests were performed in a linear sliding tribometer with an electrochemical cell interface. It was analyzed the influence of SiC particles dispersion in the NiP matrix on current density developed, on coefficient of friction and on wear volume loss. The results showed that NiP–SiC composite coatings had a lower wear volume loss compared to NiP coatings. However, the incorporation of SiC particles into the metallic matrix affects the current density developed by the system during the tribocorrosion test. It was verified that not only the volume of co-deposited particles (SiC vol.%) but also the number of SiC particles per coating area unit (and consequently the SiC particles size) have made influence on the tribocorrosion behaviour of NiP–SiC composite coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bonino, J.P., Bruet-Hotellaz, S., Bories, C., Pouderoux, P., Rousset, A.: Thermal stability of electrodeposited Ni-P alloys. J. Appl. Electrochem. 27, 1193–1197 (1997)

    Article  CAS  Google Scholar 

  2. Färber, E., Cadel, A., Menand, G., Schmitz, R.: Kirchheim phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe (TAP). Acta Mater. 48, 789–796 (2000)

    Article  Google Scholar 

  3. Vaillant S., Datas L., Bonino J.-P.: Co-dépôt électrolytique de particules de SiC dans une matrice Ni-P—Synthèse et propriétés mécaniques. Matériaux & Techniques. 11–12, 47–54 (2001)

  4. Apachitei, I., Tichelaar, F.D., Duszczzyk, J., Katgerman, L.: The effect of heat treatement on the structure and abrasive wear resistance of autocatalytic Ni-P and Ni-P-SiC coatings. Surf. Coat. Tech. 149, 263–278 (2002)

    Article  CAS  Google Scholar 

  5. Schenzel, H.G., Kreye, H.: Improved corrosion resistance of electroless nickel-phosphorus coatings. Plating Surf. Finish. 77, 50–54 (1990)

    CAS  Google Scholar 

  6. Malfatti, C.F., Ferreira, J.Z., Santos, C.B., Souza, B.V., Fallavena, E.P., Vaillant, S., Bonino, J.P.: NiP/SiC composite coatings: the effects of particles on the electrochemical behaviour. Corros. Sci. 47, 567–580 (2005)

    Article  CAS  Google Scholar 

  7. Shawki, S., Hamid, Z.A.: Deposition of high wear resistance of Ni-composite coatings. Anti-Corr. Meth. Mater. 44, 178–185 (1997)

    Article  CAS  Google Scholar 

  8. Graydon, J.W., Kirk, D.W.: Suspension electrodeposition of phosphorus and copper. J. Electrochem. Soc. 137(7), 2061–2066 (1990)

    Article  CAS  Google Scholar 

  9. Hovestad, A., Jansem, L.J.J.: Electrochemical codeposition of inert particles in a metallic matrix. J. Applied Electrochem. 25(6), 519–527 (1995)

    Article  CAS  Google Scholar 

  10. Celis, J.P., Roos, J.R., Buelens, C.A.: Mathematical model for the electrolytic codeposition of particles with a metallic matrix. J. Electrochem. Soc. 134(6), 1402–1408 (1987)

    Article  CAS  Google Scholar 

  11. Guglielmi, N.: Kinetics of the deposition of inert particles from electrolytic baths. J. Electrochem. Soc. 119, 1009–1012 (1972)

    Article  CAS  Google Scholar 

  12. Fransaer, J., Celis, J.P., Roos, J.R.: Analysis of the electrolytic codeposition of non-brownian particles with metals. J. Electrochem. Soc. 139(2), 413–425 (1992)

    Article  CAS  Google Scholar 

  13. Garcia, I., Conde, A., Langelaan, G., Fransaer, J., Celis, J.P.: Improved corrosion resistance through microstructural modifications induced by codepositing SiC-particles with electrolytic nickel. Corros. Sci. 45(6), 1173–1189 (2003)

    Article  CAS  Google Scholar 

  14. Vaillant, S.: Revêtements composites NiP/SiC électrodeposés: elaboration et caractérization des proprietés mécaniques. PhD thesis, Universite Paul Sabatier, Toulouse, France (2002), p. 170

  15. Kuo, S.L., Chen, Y.C., Ger, M.D., Hwu, W.H.: Nano-particles dispersion effect on Ni/Al2O3 composite coatings. Mater. Chem. Phys. 86, 5–10 (2004)

    Article  CAS  Google Scholar 

  16. Shi, Y.L., Yang, Z., Li, M.K., Xu, H., Li, H.L.: Electroplated synthesis of Ni-P-UFD, Ni-P-CNTs, and Ni-P-UFD-CNTs composite coatings as hydrogen evolution electrodes. Mater. Chem. Phys. 87, 154–161 (2004)

    Article  CAS  Google Scholar 

  17. Bigdeli, F., Allahkaram, S.R.: Corrosion behavior of Ni-P-SiC nano-composite coating. Int. J. Mod. Phys. B 22, 3031–3036 (2008)

    Article  CAS  Google Scholar 

  18. Aslanyan, I.R., Bonino, J.P., Celis, J.P.: Effect of reinforcing submicron SiC particles on the wear of electrolytic NiP coatings. Part 2: bi-directional sliding. Surf. Coat. Technol. 201(3–4), 581–589 (2006)

    Article  CAS  Google Scholar 

  19. Aslanyan, I.R., Bonino, J.P., Celis, J.P.: Effect of reinforcing submicron SiC particles on the wear of electrolytic NiP coatings: Part 1. Uni-directional sliding. Surf. Coat. Technol. 200(9), 2909–2916 (2006)

    Article  CAS  Google Scholar 

  20. Miranda, A., Ramalho, J.C.: Friction and wear of electroless NiP and NiP + PTFE coatings. Wear 259(7–12), 828–834 (2005)

    Google Scholar 

  21. Hou, K.H., Hwu, W.H., Ke, S.T., Ger, M.D.: Ni-P-SiC composite produced by pulse and direct current plating. Mater. Chem. Phys. 100, 54–59 (2006)

    Article  CAS  Google Scholar 

  22. Zhao, Q., Liu, Y., Abel, E.W.: Effect of Cu content in electroless Ni-Cu-P-PTFE composite coatings on their anti-corrosion properties. Mater. Chem. Phys. 87(2–3), 332–335 (2004)

    Article  CAS  Google Scholar 

  23. Kaisheva, M., Fransaer, J.: Influence of the surface properties of SiC particles on their codeposition with nickel. J. Electrochem. Soc. 151(1), C89–C96 (2004)

    Article  CAS  Google Scholar 

  24. Takadoum, J.: The influence of potential on the tribocorrosion of nickel and iron in sulfuric acid solution. Corros. Sci. 38, 643–654 (1996)

    Article  CAS  Google Scholar 

  25. Jemmely, P., Mischler, S., Landolt, D.: Electrochemical modeling of passivation phenomena in tribocorrosion. Wear 237(1), 63–76 (2000)

    Article  CAS  Google Scholar 

  26. Landolt, D., Mischler, S., Stemp, M.: Electrochemical methods in tribocorrosion: a critical appraisal. Electrochim. Acta 46(24–25), 3913–3929 (2001)

    Article  CAS  Google Scholar 

  27. Assi, F., Böhni, H.: Study of wear-corrosion synergy with a new microelectrochemical technique. Wear 233–235, 505–514 (1999)

    Article  Google Scholar 

  28. Mischler, S., Ponthiaux, P.: A round robin on combined electrochemical and friction tests on alumina/stainless steel contacts in sulphuric acid. Wear 248(1–2), 211–225 (2001)

    Article  CAS  Google Scholar 

  29. Fedrizzi, L., Rossi, S., Bellei, F., Deflorian, F.: Wear-corrosion mechanism of hard chromium coatings. Wear 253, 1173–1181 (2002)

    Article  CAS  Google Scholar 

  30. Ponthiaux, P., Wenger, F., Drees, D., Celis, J.P.: Electrochemical techniques for studying tribocorrosion processes. Wear 256(5), 459–468 (2004)

    Article  CAS  Google Scholar 

  31. Jemmely, P., Mischler, S., Landolt, D.: Electrochemical modeling of passivation phenomena in tribocorrosion. Wear 237, 63–76 (2000)

    Article  CAS  Google Scholar 

  32. Garcia, I., Fransaer, J., Celis, J.P.: Electrodeposition and sliding wear resistance of nickel composite coatings containing micron and submicron SiC particles. Surf. Coat. Technol. 148(2–3), 171–178 (2001)

    Article  CAS  Google Scholar 

  33. Malfatti, C.F., Veit, H.M., Menezes, T.L., Ferreira, J.Z., Rodriguês, J.S., Bonino, J.P.: The surfactant addition effect in the elaboration of electrodepositated NiP-SiC composite coatings. Surf. Coat. Technol. 201, 6318–6324 (2007)

    Article  CAS  Google Scholar 

  34. Grosjean, A.: Étude Fondamentale et Appliquée des Dépôts de Nickel Chimique avec Incorporation de Particules Minerales. PhD thesis, I’u. F.R. Des Sciences et Tecniques de Universitéde Franche-Comté, France (1998), p. 215

  35. Verelst, M., Bonino, J.P., Brieu, M., Rousset, A.: Thermomechanical properties of Ni-Al2O3 metal matrix composites produced by electroforming. Mater. Sci. Eng. A 191, 165–169 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from CNPq, CAPES, FAPERGS, DAAD, and Brasilien Zentrum (BW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. F. Malfatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malfatti, C.F., Veit, H.M., Santos, C.B. et al. Heat Treated NiP–SiC Composite Coatings: Elaboration and Tribocorrosion Behaviour in NaCl Solution. Tribol Lett 36, 165–173 (2009). https://doi.org/10.1007/s11249-009-9471-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9471-1

Keywords

Navigation