Skip to main content
Log in

Precursors of Global Slip in a Longitudinal Line Contact Under Non-Uniform Normal Loading

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This article describes the mechanism of precursor events; the mechanism was determined through an experiment and simulation by considering non-uniform normal loading. In the experiment, real-time observations of a contact zone were performed using a longitudinal line contact of PMMA specimens (i.e., a slider on a stationary base block) under a total normal load of 400 N. Partial propagations of the detachment front were considered as precursor events, and it was found that non-uniform normal loading influences the occurrence frequency of the precursor events and the increasing rate of the propagation length. In the simulation, the time evolution of a multi-degree-of-freedom system with Coulomb friction was studied. The model considered in the simulation comprised multiple masses serially connected by linear springs on a stationary rigid plane. By regarding the precursor in the experiment to correspond to a partial slip (i.e., simultaneous slip of some of the masses) in the simulation, the influence of non-uniform normal loading on the precursor events can be explained to a certain extent. Additionally, it was found that the apparent static friction coefficient (i.e., the ratio of the maximum tangential load to the total normal load) could be lesser than the real static friction coefficient due to the residual strain in the slider.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

E :

Young’s modulus of PMMA (Pa)

f i :

Friction (N) (Eq. 4)

\( f_{\text{k}}^{(i)} \) :

Kinetic friction (N) (Eq. 6)

\( f_{\text{s}}^{(i)} \) :

Static friction (N)

\( f_{\text{smax}}^{(i)} \) :

Maximum static friction (N) (Eq. 5)

F X :

Tangential load (N) (Eq. 3)

F Xmax :

Maximum tangential load (N)

F Z :

Total normal load (N) (Eq. 8)

F ZA :

Partial normal load (N) (Fig. 1a)

Fig. 1
figure 1

Schematic diagram of the experimental apparatus with a transmissive optical system: a front view and b side view

F ZB :

Partial normal load (N) (Fig. 1a)

k :

Stiffness of the material section (N/m) (Eq. 10)

K :

Stiffness of the loading section (N/m)

L :

Length of the slider (m)

L p :

Propagation length of precursors (m)

m :

Mass (kg) (Eq. 9)

M :

Mass of the slider (kg)

N :

Number of blocks

S :

Cross-section area of the slider (m2)

t :

Time (s)

V :

Driving speed (m/s)

w i :

Normal load (N) (Eq. 7)

x i :

Position (m)

y i :

Spring compression (m) (Eq. 11)

\( y_{i}^{\max } \) :

Maximum spring compression (m)

θ:

Degree of non-uniformity of normal loading

μk :

Kinetic friction coefficient

μs :

Static friction coefficient

μsapp :

Apparent static friction coefficient (Eq. 1)

():

Derivative with respect to time t

References

  1. Den Hartog, J.P.: Mechanical Vibration, 4th edn. McGraw-Hill, New York (1956)

    Google Scholar 

  2. Pratt, T.K., Williams, R.: Non-linear analysis of stick/slip motion. J. Sound Vib. 74, 531–542 (1981)

    Article  ADS  Google Scholar 

  3. Paliwal, M., Mahajan, A., Don, J., Chu, T., Filip, P.: Noise and vibration analysis of a disc-brake system using a stick-slip friction model involving coupling stiffness. J. Sound Vib. 282, 1273–1284 (2005)

    Article  ADS  Google Scholar 

  4. Scholz, C.H.: The Mechanics of Earthquakes and Faulting, 2nd edn. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  5. Ohnaka, M., Kuwahara, Y.: Characteristic features of local breakdown near a crack-tip in the transition zone from nucleation to unstable rupture during stick-slip shear failure. Tectonophys 175, 197–220 (1990)

    Article  Google Scholar 

  6. Nakanishi, H.: Statistical properties of the cellular-automaton model for earthquakes. Phys. Rev. A 43, 6613–6621 (1991)

    Article  PubMed  ADS  Google Scholar 

  7. Braun, O.M., Roder, J.: Transition from stick-slip to smooth sliding: an earthquakelike model. Phys. Rev. Lett. 88, 096102 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Bykov, V.G.: Stick-slip and strain waves in the physics of earthquake rupture: experiments and models. Acta Geophys. 56, 270–285 (2008)

    Article  ADS  Google Scholar 

  9. Dieterich, J.H., Kilgore, B.D.: Direct observation of frictional contacts: new insights for state-dependent properties. Pure Appl. Geophys. 143, 283–302 (1994)

    Article  ADS  Google Scholar 

  10. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Oxford University Press, Oxford (1950)

    Google Scholar 

  11. Persson, B.N.J.: Sliding Friction, 2nd edn. Springer, New York (2000)

    MATH  Google Scholar 

  12. Nakano, K.: Two dimensionless parameters controlling the occurrence of stick-slip motion in a 1-DOF system with Coulomb friction. Tribol. Lett. 24, 91–98 (2006)

    Article  Google Scholar 

  13. Nakano, K., Maegawa, S.: Safety-design criteria of sliding systems for preventing friction-induced vibration. J. Sound Vib. 324, 539–555 (2009)

    Article  ADS  Google Scholar 

  14. Nakano, K., Maegawa, S.: Stick-slip in sliding systems with tangential contact compliance. Tribol. Int. 42, 1771–1780 (2009)

    Article  Google Scholar 

  15. Nakano, K., Maegawa, S.: Occurrence limit of stick-slip: dimensionless analysis for fundamental design of robust stable systems. Lubr. Sci. 22, 1–18 (2010)

    Google Scholar 

  16. Gerde, E., Marder, M.: Friction and fracture. Nature 413, 285–288 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Baumberger, T., Caroli, C., Ronsin, O.: Self-healing slip pulses along a gel/glass interface. Phys. Rev. Lett. 88, 075509 (2002)

    Article  PubMed  ADS  Google Scholar 

  18. Xia, K., Rosakis, A.J., Kanamori, H.: Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Rubinstein, S.M., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Rubinstein, S.M., Shay, M., Cohen, G., Fineberg, J.: Crack-like processes governing the onset of frictional slip. Int. J. Fract. 140, 201–212 (2006)

    Article  MATH  Google Scholar 

  21. Rubinstein, S.M., Cohen, G., Fineberg, J.: Dynamics of precursors to frictional sliding. Phys. Rev. Lett. 98, 226103 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Braun, O.M., Barel, I., Urbakh, M.: Dynamics of transition from static to kinetic friction. Phys. Rev. Lett. 103, 194301 (2009)

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Bureau, L., Baumberger, T., Caroli, C.: Rheological aging and rejuvenation in solid friction contacts. Eur. Phys. J. E 8, 331–337 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. Richeton, J., Ahzi, S., Vecchio, K.S., Jiang, F.C., Adharapurapu, R.R.: Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: characterization and modeling of the compressive yield stress. Int. J. Solids Struct. 43, 2318–2335 (2006)

    Article  CAS  Google Scholar 

  25. Carlson, J.M., Langer, J.S.: Mechanical model of an earthquake fault. Phys. Rev. A 40, 6470–6484 (1989)

    Article  PubMed  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Nakano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maegawa, S., Suzuki, A. & Nakano, K. Precursors of Global Slip in a Longitudinal Line Contact Under Non-Uniform Normal Loading. Tribol Lett 38, 313–323 (2010). https://doi.org/10.1007/s11249-010-9611-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9611-7

Keywords

Navigation