Skip to main content
Log in

Analysis of Coupled Poroviscoelasticity and Hydrodynamic Lubrication

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

As the state of the art pushes triboelements toward greater capabilities and longevity, the need for evolving triboelement technology exists. The following work explores a novel coupling of phenomena inspired by biomimetics. A poroviscoelastic substrate coupled to a fluid film load is modeled and compared to its rigid counterpart. It is hypothesized that poroviscoelasticity can improve triboelement properties such as damping and wear resistance and have utility in certain applications where flexibility is desired (e.g., biomechanical joint replacements, flexible rotordynamic bearings, and mechanical seals). This study provides the framework for the analysis of flexible, porous viscoelastic materials and hydrodynamic lubrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a :

Film inlet to outlet ratio (\(h_\mathrm{i}/h_\mathrm{o}\))

B :

Biot poroelastic constant

D :

Bearing pad depth

\(E_n\) :

Fractional calculus viscoelastic parameter

h :

Fluid film thickness

\(h_\mathrm{i}\) :

Inlet fluid film thickness

\(h_\mathrm{o}\) :

Outlet fluid film thickness

H :

Bearing pad height

k :

Permeability

K :

Biot poroelastic constant

L :

Bearing pad length

p :

Pore pressure in substrate pad

P :

Fluid film pressure

u :

Fluid velocity in x direction

\(U_1\) :

Bearing velocity

\(U_x\) :

Filter velocity in x direction

\(U_y\) :

Filter velocity in y direction

\(\alpha\) :

Beavers–Joseph slip coefficient

\(\alpha _\mathrm{B}\) :

Biot poroelastic constant

\(\delta _{ij}\) :

Kronecker delta (index notation)

\(\lambda\) :

Fractional calculus viscoelastic parameter

\(\mu\) :

Lubricant viscosity

\(\epsilon _{ij}\) :

Strain

\(\sigma _{ij}\) :

Stress

\(\sigma ^*_{ij}\) :

Effective stress in porous material

\((\sigma _\mathrm{ve})_{ij}\) :

Viscoelastic stress

\(\xi\) :

Porous film thickness modifier

\(\zeta\) :

Poroelastic fluid strain

References

  1. ABAQUS: Abaqus Documentation 6.14. Dassault Systems Simulia Corp., Providence, RI, USA (2014)

  2. Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  3. Biesel, V.: Experimental measurement of the dynamic properties of viscoelastic materials. Master’s thesis, Georgia Institute of Technology (1993). https://books.google.com/books?id=UfzItgAACAAJ

  4. Biot, M.A.: Le problme de la consolidation des matires argileuses sous une charge. Ann. Soc. Sci. Bruxelles B55, 110–113 (1935)

    Google Scholar 

  5. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  Google Scholar 

  6. Biot, M.A.: Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena. J. Appl. Phys. 25(11), 1385–1391 (1954)

    Article  Google Scholar 

  7. Biot, M.A.: Dynamics of viscoelastic anisotropic media. In: Proceedings of the Fourth Midwestern Conference on Solid Mechanics, Purdue University (Publication no 129 engineering experiment station, Purdue University, Lafayette, IN), pp. 94–108, September 8–9 (1955)

  8. Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955)

    Article  Google Scholar 

  9. Biot, M.A.: Variational and lagrangian methods in viscoelasticity. In: Grammel, R., (ed.) Deformation and Flow of Solids. Springer, New York (1955)

    Google Scholar 

  10. Biot, M.A., Willis, D.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)

    Google Scholar 

  11. Bishop, A.W.: The use of pore-pressure coefficients in practice. Gotechnique 4(4), 148–152 (1954). doi:10.1680/geot.1954.4.4.148

    Article  Google Scholar 

  12. Etsion, I., Halperin, G.: A laser surface textured hydrostatic mechanical seal. Tribol. Trans. 45(3), 430–434 (2002)

    Article  Google Scholar 

  13. Etsion, I., Michael, O.: Enhancing sealing and dynamic performance with partially porous mechanical face seals. Tribol. Trans. 37(4), 701–710 (1994). doi:10.1080/10402009408983349

    Article  Google Scholar 

  14. Gurtin, M.E., Sternberg, E.: On the linear theory of viscoelasticity. Arch. Ration. Mech. Anal. 11(1), 291–356 (1962). doi:10.1007/bf00253942

    Article  Google Scholar 

  15. Hamrock, B., Schmid, S., Jacobson, B.: Fundamentals of Fluid Film Lubrication. Mechanical engineering. CRC Press (2004). https://books.google.com/books?id=s_sTzyB2QmYC

  16. Miller, B., Green, I.: Numerical formulation for the dynamic analysis of spiral-grooved gas face seals. J. Tribol. 123, 395–403 (2001)

    Article  Google Scholar 

  17. Prakash, J., Vij, S.: Analysis of narrow porous journal bearing using Beavers–Joseph criterion of velocity slip. J. Appl. Mech. 41(2), 348–354 (1974)

    Article  Google Scholar 

  18. Skempton, A.W.: The pore-pressure coefficients a and b. Gotechnique 4(4), 143–147 (1954). doi:10.1680/geot.1954.4.4.143

    Article  Google Scholar 

  19. Smyth, P.A., Green, I.: A fractional calculus model of articular cartilage based on experimental stress-relaxation. Mech. Time Depend. Mater. 19(2), 209–228 (2015)

  20. Smyth, P.A., Green, I., Jackson, R.L., Hanson, R.R.: Biomimetic model of articular cartilage based on in vitro experiments. J. Biomim. Biomater. Biomed. Eng. 21, 75–91 (2014)

    Article  Google Scholar 

  21. Szumski, R.G., Green, I.: Constitutive laws in time and frequency domains for linear viscoelastic materials. J. Acoust. Soc. Am. 90(40), 2292 (1991)

    Article  Google Scholar 

  22. Terzaghi, K.: Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen. Sitz. Akad. Wissen. Wien Math. Naturwiss. Kl. Abt. IIa 132, 105–124 (1923)

    Google Scholar 

  23. Wang, H.: Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton series in geophysics. Princeton University Press (2000). https://books.google.com/books?id=RauGOzaQBRUC

  24. Wilson, W., van Donkelaar, C.C., van Rietbergen, B., Ito, K., Huiskes, R.: Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. Journal of Biomechanics 37(3), 357–366 (2004). doi:10.1016/s0021-9290(03)00267-7. http://www.sciencedirect.com/science/article/pii/S0021929003002677

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick A. Smyth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smyth, P.A., Green, I. Analysis of Coupled Poroviscoelasticity and Hydrodynamic Lubrication. Tribol Lett 65, 1 (2017). https://doi.org/10.1007/s11249-016-0787-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0787-3

Keywords

Navigation