Skip to main content
Log in

Deformation of Ti-Based Bulk Metallic Glass Under a Cutting Tip

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This study aims to investigate the fundamental deformation mechanism of Ti-based bulk metallic glass under mechanical loading by a cutting tip. The cutting tip interaction is resolved into two separate actions, namely nanoindentation by using a Berkovich diamond indenter and contact sliding under a pin-on-disk configuration. The deformation details in the specimens due to the action of the corresponding mechanical loading were analyzed by SEM and TEM. It was found that under nanoindentation, the plastic deformation is evidenced by a series of pop-ins in load–displacement graphs. The temperature rise at the contact interface during sliding must have been above the glass transition temperature and the onset temperature of crystallization, leading to the formation of discrete nanocrystalline particles in the immediate subsurface and hence bringing about an increase in hardness of the metallic glass in the wear tracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ψ :

Half angle of Berkovich indenter (°)

F max :

Peak load during nanoindentation (mN)

T g :

Glass transition temperature (K)

T x :

Onset temperature of crystallization (K)

T b :

Average bulk surface temperature (K)

T f :

Average flash temperature (K)

T 0 :

Room temperature (K)

l b :

Equivalent thermal length (m)

v :

Sliding velocity (m/s)

a :

Coefficient of thermal diffusivity (m2/s)

r 0 :

Radius of the pin (m)

μ :

Coefficient of friction

A n :

Nominal (apparent) contact area (m2)

K m :

Thermal conductivity of the pin (j/k m s)

H 0 :

Room temperature hardness (Pa)

r a :

Radius of an asperity (m)

N :

Number of contacting asperities

\(\bar{F}\) :

Normalized force

F :

Normal force on sliding interface (N)

\(\bar{V}\) :

Normalized sliding velocity

References

  1. Greer, A.L.: Metallic glasses. Science 267, 1947–1953 (1995)

    Article  Google Scholar 

  2. Johnson, W.L.: Bulk glass-forming metallic alloys: science and technology. Mater. Res. Bull. 24(10), 42–56 (1999)

    Article  Google Scholar 

  3. Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279–306 (2000)

    Article  Google Scholar 

  4. Ishida, M., Takeda, H., Nishiyama, N., Kita, K., Shimizu, Y., Saotome, Y., Inoue, A.: Wear resistivity of super-precision micro-gear made of Ni-based metallic glass. Mater. Sci. Eng. A 449–451, 149–154 (2007)

    Article  Google Scholar 

  5. Burgess, T., Ferry, M.: Nanoindentation of metallic glasses. Mater. Today 12(1–2), 32–34 (2009)

    Google Scholar 

  6. Cheng, L., Jiao, Z.M., Ma, S.G., Qiao, J.W., Wang, Z.H.: Serrated flow behaviours of a Zr-based bulk metallic glass by nanoindentation. J. Appl. Phys. 115(2014), 084907 (2014)

    Article  Google Scholar 

  7. Ketova, S.V., Louzguine-Luzgin, D.V.: Localized shear deformation and softening of bulk metallic glass: stress or temperature driven. Sci. Rep. 3, 2798 (2013)

    Article  Google Scholar 

  8. Fleury, E., Lee, S.M., Ahn, H.S., Kim, W.T., Kim, D.H.: Tribological properties of bulk metallic glasses. Mater. Sci. Eng. A 375–377, 276–279 (2004)

    Article  Google Scholar 

  9. Wang, W.H., Dong, C., Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng. A 44, 45–89 (2004)

    Article  Google Scholar 

  10. Ashby, M.F., Greer, A.L.: Metallic glass as structural materials. Scripta Mater. 54(3), 321–326 (2006)

    Article  Google Scholar 

  11. Rahaman, M.L., Zhang, L.C., Ruan, H.H.: Effects of environmental temperature and sliding speed on the tribological behaviour of a Ti-based metallic glass. Intermetallics 52, 36–48 (2014)

    Article  Google Scholar 

  12. Rahaman, M.L., Zhang, L.C., Ruan, H.H.: Understanding the friction and wear mechanisms of bulk metallic glass under contact sliding. Wear 304, 43–48 (2013)

    Article  Google Scholar 

  13. Rahaman, M.L., Zhang, L.: On the estimation of interface temperature during contact sliding of bulk metallic glass. Wear 320, 77–86 (2014)

    Article  Google Scholar 

  14. Rahaman, M.L., Zhang, L.: Interface temperature during contact sliding of two solids: relationship between predicted flash temperature and the experimentally measured. Proc. Inst. Mech. Eng. Part J. Eng. Tribol. 231(1), 3–13 (2017)

    Article  Google Scholar 

  15. Zhang, L., Basak, A.: Quantitative prediction of phase transformations in silicon during nanoindentation. Philos. Mag. Lett. 93(8), 448–456 (2013)

    Article  Google Scholar 

  16. Helbawi, H., Zhang, L., Zarudi, I.: Difference in subsurface damage in indented specimens with and without bonding layer. Int. J. Mech. Sci. 43, 1107–1112 (2001)

    Article  Google Scholar 

  17. Fu, X.Y., Rigney, D.A.: Tribological characteristics of Zr41.2Ti13.8Cu12.5Ni10.0 Be22.5 bulk metallic glass. Mater. Res. Soc. Symp. Proc. 554, 437–442 (1999)

    Article  Google Scholar 

  18. Kong, J., Xiong, D., Li, J., Yuan, Q., Tyagi, R.: Effect of flash temperature on tribological properties of bulk metallic glasses. Tribol. Lett. 35, 151–158 (2009)

    Article  Google Scholar 

  19. Bowden, F.P., Thomas, P.H.: The surface temperature of sliding solids. Proc. R. Soc. Lond. Ser. A 223, 29–40 (1954)

    Article  Google Scholar 

  20. Lim, S.C., Ashby, M.F.: Wear- mechanism maps. Acta Metall. 35(1), 1–24 (1987)

    Article  Google Scholar 

  21. Gu, X.J., Poon, S.J., Shiflet, G.J.: Compressive plasticity and toughness of a Ti-based bulk metallic glass. Acta Mater. 58, 1708–1720 (2010)

    Article  Google Scholar 

  22. Busch, R.: The thermo-physical properties of bulk metallic glass-forming liquids. JOM 52, 39–42 (2000)

    Article  Google Scholar 

  23. Wu, H., Baker, I., Liu, Y., Wu, X., Munroe, P.R.: Effects of environment on the sliding tribological behaviours of Zr-based bulk metallic glass. Intermetallics 25, 115–125 (2012)

    Article  Google Scholar 

  24. Maddala, D.R., Mubarok, A., Hebert, R.J.: Sliding wear behaviour of Cu50Hf41.5Al8.5 bulk metallic glass. Wear 269, 572–580 (2010)

    Article  Google Scholar 

  25. Blau, P.J.: Friction and wear of a Zr-based amorphous metal alloy under dry and lubricated conditions. Wear 250, 431–434 (2001)

    Article  Google Scholar 

  26. Tao, P.J., Yang, Y.Z., Ru, Q.: Effect of rotational sliding velocity on surface friction and wear behaviour in Zr-based bulk metallic glass. J. Alloys Compd. 492, L36–L39 (2010)

    Article  Google Scholar 

  27. Maddala, D.R., Hebert, R.J.: Sliding wear behaviour of Fe50-xCr15Mo14C15B6Erx (x = 0, 1, 2 at%) bulk metallic glass. Wear 294–295, 246–256 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Australian Research Council for its financial support to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Basak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, A.K., Zhang, L. Deformation of Ti-Based Bulk Metallic Glass Under a Cutting Tip. Tribol Lett 66, 27 (2018). https://doi.org/10.1007/s11249-017-0975-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0975-9

Keywords

Navigation