Skip to main content

Advertisement

Log in

Effect of Tribo-Oxidation on Friction and Wear Behaviour of HVOF Sprayed WC–10Co–4Cr Coating

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The effect of tribo-chemical reactions under varying sliding speed and load conditions on the friction and abrasive wear response of high-velocity oxy-fuel-sprayed WC–10Co–4Cr coating was studied. The abrasive wear rate and friction coefficient decreased with the increase in sliding speed while friction coefficient displayed increasing trend with increase in load. The decrease in friction coefficient and wear rate was attributed to formation of tribo-oxides and surface films with good lubricating properties. Severity of abrasive wear increased with increasing load which was associated with transition in wear mechanisms from plastic deformation and fatigue to delamination cracking, intergranular fracture and splat fracture. Increase in friction coefficient with load irrespective of sliding speed was due to increasing contribution of fracture-assisted mechanical wear as compared to oxidative wear. The nature, composition and properties of tribo-films imparted crucial role to influencing friction and abrasive wear of WC–10Co–4Cr coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gong, T., Yao, P., Zuo, X., Zhang, Z., Xiao, Y., Zhao, L., et al.: Influence of WC carbide particle size on the microstructure and abrasive wear behavior of WC–10Co–4Cr coatings for aircraft landing gear. Wear 362–363, 135–145 (2016)

    Article  Google Scholar 

  2. Bolelli, G., Berger, L.M., Bonetti, M., Lusvarghi, L.: Comparative study of the dry sliding wear behaviour of HVOF-sprayed WC–(W, Cr)2C–Ni and WC–CoCr hardmetal coatings. Wear 309, 96–111 (2014)

    Article  Google Scholar 

  3. Karaoglanli, A., Oge, M., Doleker, K.M., Hotamis, M.: Comparison of tribological properties of HVOF sprayed coatings with different composition. Surf. Coat. Technol. 318, 299–308 (2017)

    Article  Google Scholar 

  4. Morks, M.F., Gao, Y., Fahim, N.F., Yingqing, F.U., Shoeib, M.A.: Influence of binder materials on the properties of low power plasma sprayed cermet coatings. Surf. Coat. Technol. 199, 66–71 (2005)

    Article  Google Scholar 

  5. Sapate, S.G., Roy, M.: Solid particle erosion of thermal sprayed coatings. In: Roy, M., Davim, J.P. (eds.) Thermal Sprayed Coatings and their Tribological Performances, pp. 193–226. IGI Global Publications, Hershey (2015)

    Chapter  Google Scholar 

  6. Vashishtha, N., Khatirkar, R.K., Sapate, S.G.: Tribological behaviour of HVOF sprayed WC–12Co, WC–10Co–4Cr and Cr3C2–25NiCr coatings. Tribol. Int. 105, 55–68 (2017)

    Article  Google Scholar 

  7. Savarimuthu, A.C., Taber, H.F., Megat, I., Shadley, J.R., Rybicki, E.F., et al.: Sliding wear behavior of tungsten carbide thermal spray coatings for replacement of chromium electroplate in aircraft applications. J. Thermal Spray Technol. 10(3), 502–510 (2001)

    Article  Google Scholar 

  8. Karimi, A., Verdon, C., Barbezat, G.: Microstructure and hydroabrasive wear behaviour of high velocity oxy-fuel thermally sprayed WCCo(Cr) coatings. Surf. Coat. Technol. 57, 81–89 (1993)

    Article  Google Scholar 

  9. Thakare, M.R., Wharton, J.A., Wood, R.J.K., Menger, C.: Effect of abrasive particle size and the influence of microstructure on the wear mechanisms in wear-resistant materials. Wear 276–277, 16–28 (2012)

    Article  Google Scholar 

  10. Federici, M., Menapace, C., Moscatelli, A., Gialanella, S., Straffelini, G.: Effect of roughness on the wear behaviour of HVOF coatings dry sliding against a friction material. Wear 368–369, 326–334 (2016)

    Article  Google Scholar 

  11. Picas, J.A., Punset, M., Baile, M.T., Martín, E., Forn, A.: Effect of oxygen/fuel ratio on the in-flight particle parameters and properties of HVOF WC–CoCr coatings. Surf. Coat. Technol. 205, S364–S368 (2011)

    Article  Google Scholar 

  12. Guilemany, J.M., Paco, J.M.D., Nutting, J., Miguel, J.R.: Characterization of the W2C phase formed during the high velocity oxygen fuel spraying of a WC + 12 Pct Co powder. Metall. Mater. Trans. A 30A, 1913–1921 (1999)

    Article  Google Scholar 

  13. Jacobs, L., Hyland, M.M., Bonte, M.D.: Comparative study of WC-cermet coatings sprayed via the HVOF and the HVAF process. J. Thermal Spray Technol. 7(2), 213–218 (1998)

    Article  Google Scholar 

  14. Ghabchi, A., Varis, T., Turunen, E., Suhonen, T., Liu, X., Hannula, S.P.: Behavior of HVOF WC-10Co4Cr coatings with different carbide size in fine and coarse particle abrasion. J. Thermal Spray Technol. 19(1–2), 368–377 (2010)

    Article  Google Scholar 

  15. Murthy, J.K.N., Venkataraman, B.: Abrasive wear behaviour of WC–CoCr and Cr3C2–20(NiCr) deposited by HVOF and detonation spray processes. Surf. Coat. Technol. 200, 2642–2652 (2006)

    Article  Google Scholar 

  16. Kumari, K., Anand, K., Bellacci, M., Giannozzi, M.: Effect of microstructure on abrasive wear behavior of thermally sprayed WC–10Co–4Cr coatings. Wear 268, 1309–1319 (2010)

    Article  Google Scholar 

  17. Bolelli, G., Berger, L.M., Börner, T., Koivuluoto, H., Lusvarghi, L., Lyphout, C., et al.: Tribology of HVOF- and HVAF-sprayed WC–10Co4Cr hardmetal coatings: a comparative assessment. Surf. Coat. Technol. 265, 125–144 (2015)

    Article  Google Scholar 

  18. Guo, X., Planche, M.P., Chen, J., Liao, H.: Relationships between in-flight particle characteristics and properties of HVOF sprayed WC–CoCr coatings. J. Mater. Process. Technol. 214, 456–461 (2014)

    Article  Google Scholar 

  19. Upadhyaya, R., Tailor, S., Shrivastava, S., Modi, S.C.: High performance thermal-sprayed WC–10Co–4Cr coatings in narrow and complex areas. Surf, Engg (2017)

    Google Scholar 

  20. Hulka, I., Serban, V.A., Secosan, I., Vuoristo, P., Niemi, K.: Wear properties of CrC-37WC-18M coatings deposited by HVJOF and HVAF spraying processes. Surf. Coat. Technol. 210, 15–20 (2012)

    Article  Google Scholar 

  21. Lee, C.W., Han, J.H., Yoon, J., Shin, M.C., Kwun, S.I.: A study on powder mixing for high fracture toughness and wear resistance of WC–Co–Cr coatings sprayed by HVOF. Surf. Coat. Technol. 204, 2223–2229 (2010)

    Article  Google Scholar 

  22. Xie, M., Zhang, S., Li, M.: Comparative investigation on HVOF sprayed carbide-based coatings. Appl. Surf. Sci. 273, 799–805 (2013)

    Article  Google Scholar 

  23. Chivavibul, P., Watanabe, M., Kuroda, S., Shinoda, K.: Effects of carbide size and Co content on the microstructure and mechanical properties of HVOF-sprayed WC–Co coatings. Surf. Coat. Technol. 202, 509–521 (2007)

    Article  Google Scholar 

  24. Thakur, L., Arora, N.: Sliding and abrasive wear behaviour of WC–CoCr coatings with different carbide sizes. J Mater. Engg. Perform. 22(2), 574–583 (2013)

    Article  Google Scholar 

  25. Wang, D., Zhang, B., Jia, C., Gao, F., Yu, Y., Chu, K., Zhang, M., Zhao, X.: Influence of carbide grain size and crystal characteristics on the microstructure and mechanical properties of HVOF-sprayed WC–CoCr coatings. Int. J. Refract. Met. Hard Mater. 69, 138–152 (2017)

    Article  Google Scholar 

  26. Wesmann, J.A.R., Espallargas, N.: Effect of atmosphere, temperature and carbide size on the sliding friction of self-mated HVOF WC–CoCr contacts. Tribol. Int. 101, 301–313 (2016)

    Article  Google Scholar 

  27. Berger, L.M., Vuoristo, P., Mantyla, T., Kunert, W., Lengauer, W., Ettmayer, P.: Microstructure and properties of WC–Co–Cr coatings. In: Berndt, C.C. (ed.) Thermal Spray: Practical Solutions for Engineering Problem, pp. 96–106. ASM International, Materials Park (1996)

    Google Scholar 

  28. Basak, A.K., Achanta, S., Bonte, M.D., Celis, J.P., Vardavoulias, M., Matteazzi, P.: Effect of Al and Cr addition on tribological behaviour of HVOF and APS nanostructured WC–Co coatings. Trans. IMF 85(6), 310–315 (2007)

    Article  Google Scholar 

  29. Jacobs, L., Hyland, M.M., Bonte, M.D.: Study of the influence of microstructural properties on the sliding-wear behavior of HVOF and HVAF sprayed WC-cermet coatings. J. Thermal Spray Technol. 8(1), 125–132 (1999)

    Article  Google Scholar 

  30. Wang, H., Wang, X., Song, X., Liu, X., Liu, X.: Sliding wear behavior of nanostructured WC–Co–Cr coatings. Appl. Surf. Sci. 355, 453–460 (2015)

    Article  Google Scholar 

  31. Wu, Y., Hong, S., Zhang, J., He, Z., Guo, W., Wang, Q., Li, G.: Microstructure and cavitation erosion behavior of WC–Co–Cr coating on 1Cr18Ni9Ti stainless steel by HVOF thermal spraying. Int. J. Refract. Metals Hard Mater. 32, 21–26 (2012)

    Article  Google Scholar 

  32. Goyal, D.K., Singh, H., Kumar, H., Sahni, V.: Slurry erosion behaviour of HVOF sprayed WC–10Co–4Cr and Al2O3 + 13TiO2 coatings on a turbine steel. Wear 289, 46–57 (2012)

    Article  Google Scholar 

  33. Engqvist, H., Hogberg, H., Botton, G.A., Ederyd, S., Axen, N.: Tribofilm formation on cemented carbides in dry sliding conformal contact. Wear 239, 219–228 (2000)

    Article  Google Scholar 

  34. Fervel, V., Normand, B., Liao, H., Coddet, C., Beche, E., Berjaon, R.: Friction and wear mechanisms of thermally sprayed ceramic and cermet coatings. Surf. Coat. Technol. 111, 255–262 (1999)

    Article  Google Scholar 

  35. Wesmann, J.A.R., Espallargas, N.: Elucidating the complex role of surface oxides formed during sliding of self-mated warm sprayed WC–CoCr in different environments. Tribol. Int. 94, 360–372 (2016)

    Article  Google Scholar 

  36. Vashishtha, N., Sapate, S.G.: Abrasive wear maps for High Velocity Oxy Fuel (HVOF) sprayed WC-12Co and Cr3C2–25NiCr coatings. Tribol. Int. 114, 290–305 (2017)

    Article  Google Scholar 

  37. Edrisy, A., Perry, T., Cheng, Y.T., Alpas, A.T.: Wear of thermally spray deposited low carbon steel coatings on aluminium alloys. Wear 251, 1023–1033 (2001)

    Article  Google Scholar 

  38. Zhang, C., Song, J., Jiang, L., Gao, J., Liang, G., Lei, C., et al.: Fabrication and tribological properties of WC-TiB2 composite cutting tool materials under dry sliding condition. Tribol. Int. 109, 97–103 (2017)

    Article  Google Scholar 

  39. Geng, Z., Li, S., Duan, D.L., Liu, Y.: Wear behaviour of WC–Co HVOF coatings at different temperatures in air and argon. Wear 330–331, 348–353 (2015)

    Article  Google Scholar 

  40. Zhang, W.C., Liu, L.B., Zhang, M.T., Huang, G.X., Liang, J.S., Li, X., Zhang, L.G.: Comparison between WC–10Co–4Cr and Cr3C2-25NiCr coatings sprayed on H13 steel by HVOF. Trans. Nonferrous Met. Soc. China 25, 3700–3707 (2015)

    Article  Google Scholar 

  41. Jafari, M., Enayati, M.H., Salehi, M., Nahvi, S.M., Park, C.G.: Comparison between oxidation kinetics of HVOF sprayed WC–12Co and WC–10Co–4Cr coatings. Int. J. Refract. Metal Hard Mater. 41, 78–84 (2013)

    Article  Google Scholar 

  42. Vashishtha, N., Sapate, S.G., Bagde, P., Rathod, A.B.: Effect of heat treatment on friction and abrasive wear behaviour of WC-12Co and Cr3C2-25NiCr coatings. Tribol. Int. 118, 381–399 (2018)

    Article  Google Scholar 

  43. Evans, A.G., Wilshaw, T.R.: Quasi-static solid particle damage in brittle solids-I. Observations analysis and implications. Acta Metali. 24, 939–956 (1976)

    Google Scholar 

  44. Stewart, D.A., Shipway, P.H., McCartney, D.G.: Microstructural evolution in thermally sprayed WC–Co coatings: comparison between nanocomposite and conventional starting powder. Acta Mater. 48, 1596–1604 (2000)

    Article  Google Scholar 

  45. Masoumi, H., Safavi, S.M., Salehi, M., Nahvi, S.M.: Effect of grinding on the residual stress and adhesion strength of HVOF thermally sprayed WC–10Co–4Cr coating. Mater Manuf. Process. 29, 1139–1151 (2014)

    Article  Google Scholar 

  46. Stewart, D.A., Shipway, P.H., McCartney, D.G.: Abrasive wear behaviour of conventional and nanocomposite HVOF-sprayed WC–Co coatings. Wear 225–229, 789–798 (1999)

    Article  Google Scholar 

  47. Yang, Q., Senda, T., Ohmori, A.: Effect of carbide grain size on microstructure and sliding wear behavior of HVOF-sprayed WC-12% Co coatings. Wear 254, 23–34 (2003)

    Article  Google Scholar 

  48. Basse, J.L.: Binder extrusion in sliding wear of WC–Co alloys. Wear 105, 247–256 (1985)

    Article  Google Scholar 

  49. Nicholls, J.R., Wellman, R.G.: Oxidative wear. In: Bruce, R.W. (ed.) Handbook of Lubrication and Tribology: Theory and Design, 2nd edn, pp. 1–24. CRC Press, Boca Raton (2012)

    Google Scholar 

  50. Bozzi, A.C., Mello, J.D.B.D.: Wear resistance and wear mechanisms of WC-12%Co thermal sprayed coatings in three-body abrasion. Wear 233–235, 575–587 (1999)

    Article  Google Scholar 

  51. Liu, Y., Erdemir, A., Meletis, E.I.: A study of the wear mechanism of diamond like carbon films. Surf. Coat. Technol. 82, 48–56 (1996)

    Article  Google Scholar 

  52. Narayanaswamy, B., Hodgson, P., Beladi, H.: Effect of particle characteristics on the two-body abrasive wear behaviour of a pearlitic steel. Wear 354–355, 41–52 (2016)

    Article  Google Scholar 

  53. Hutchings, I.M.: Friction and Wear of Engineering Materials. Edward Arnold, London (1992)

    Google Scholar 

  54. Trevisiol, C., Jourani, A., Bouvier, S.: Effect of hardness, microstructure, normal load and abrasive size on friction and on wear behaviour of 35NCD16 steel. Wear 388–389, 101–111 (2017)

    Article  Google Scholar 

  55. Singh, K., Khatirkar, R.K., Sapate, S.G.: Microstructure evolution and abrasive wear behaviour of D2 steel. Wear 328–329, 206–216 (2015)

    Article  Google Scholar 

  56. Quinn, T.F.J.: Oxidational wear. Wear 18, 413–419 (1971)

    Article  Google Scholar 

  57. Quinn, T.F.J., Rowson, D.M., Sullivan, J.L.: Application of the oxidational theory of mild wear to the sliding wear of low alloy steel. Wear 65, 1–20 (1980)

    Article  Google Scholar 

  58. Conceição, L.D., D’Oliveira, A.S.C.M.: The effect of oxidation on the tribolayer and sliding wear of a Co-based coating. Surf. Coat. Technol. 288, 69–78 (2016)

    Article  Google Scholar 

  59. Liu, Y., Cheng, J., Yang, B., Zhu, S., Qiao, Z., Yang, J.: Study of the tribological behaviors and wear mechanisms of WC–Co and WC-Fe3Al hard materials under dry sliding condition. Tribol. Int. 109, 19–25 (2017)

    Article  Google Scholar 

  60. Pauschitz, A., Roy, M., Franek, F.: Mechanisms of sliding wear of metals and alloys at elevated temperatures. Tribol. Int. 41, 584–602 (2008)

    Article  Google Scholar 

  61. Stott, F.H., Lin, D.S., Wood, G.C.: The structure and mechanism of formation of the ‘glaze’ oxide layers produced on nickel-based alloys during wear at high temperatures. Corros. Sci. 13, 449–469 (1973)

    Article  Google Scholar 

  62. Stott, F.H.: The role of oxidation in the wear of alloys. Tribol. Int. 31, 61–71 (1998)

    Article  Google Scholar 

  63. Okonkwo, P.C., Kelly, G., Rolfe, B.F., Pereira, M.P.: The effect of sliding speed on the wear of steel—tool steel pairs. Tribol. Int. 97, 218–227 (2016)

    Article  Google Scholar 

  64. Hussainova, I.: Microstructure and erosive wear in ceramic based composites. Wear 258, 357–365 (2005)

    Article  Google Scholar 

  65. Kato, K.: Wear in relation to friction—a review. Wear 241, 151–157 (2000)

    Article  Google Scholar 

  66. Czizhos, H.: Tribology—a systems approach to the science and technology of friction, lubrication and wear. Tribology series, vol. 1. Elsevier, New York (1978)

    Google Scholar 

  67. Dean, J.A.: Lange’s Handbook of Chemistry, 12th edn. McGraw-Hill, New York (1979)

    Google Scholar 

  68. Yamanaka, K., Mori, M., Chiba, A.: Surface characterisation of Ni-free Co–Cr–W-based dental alloys exposed to high temperatures and the effects of adding silicon. Corros. Sci. 94, 411–419 (2015)

    Article  Google Scholar 

  69. Singhal, S.C.: Effect of water vapor on the oxidation of hot-pressed silicon nitride and silicon carbide. J Am. Ceram. Soc. 59, 81–82 (1975)

    Article  Google Scholar 

  70. Voitovich, V.B., Sverdel, V.V., Voitovich, R.F., Golovko, E.I.: Oxidation of WC–Co, WC–Ni and WC–Co–Ni hard metals in the temperature range 500-800°C. Int. J. Refract. Metal Hard Mater. 14, 289–295 (1996)

    Article  Google Scholar 

  71. Chen, L., Yi, D., Wang, B., Liu, H., Wu, C.: Mechanism of the early stages of oxidation of WC–Co cemented carbides. Corros. Sci. 103, 75–87 (2016)

    Article  Google Scholar 

  72. Petitto, S.C., Marsh, E.M., Carson, G.A., Langell, M.: Cobalt oxide surface chemistry: the interaction of CoO (1 0 0), Co3O4 (1 1 0), and Co3O4 (1 1 1) with oxygen and water. J. Mol. Catal. A Chem. 281, 49–58 (2008)

    Article  Google Scholar 

  73. Douglass, D.L., Armijo, J.S.: The influence of manganese and silicon on oxidation behaviour of Co-20Cr. Oxid. Met. 3(2), 185–202 (1971)

    Article  Google Scholar 

  74. Tedmon, C.S.: The effect of oxide volatization on the oxidation kinetics of Cr and Fe-Cr alloys. J. Electrochem. Soc. 113(8), 166–768 (1966)

    Google Scholar 

  75. Clemow, A.J.T., Daniell, B.L.: The influence of microstructure on the adhesive wear resistance of a Co–Cr–Mo alloy. Wear 61, 219–231 (1980)

    Article  Google Scholar 

  76. Wood, G.C., Hodgkiess, T.: The hardness of oxides at ambient temperatures. Mater. Corros. 23, 766–773 (1972)

    Article  Google Scholar 

  77. Jiang, J., Stott, F.H., Stack, M.M.: The effect of partial pressure of oxygen on the tribological behaviour of a nickel-based alloy, N80A, at elevated temperatures. Wear 203–204, 615–625 (1997)

    Article  Google Scholar 

  78. Magneli, A.: Structures of the ReO3-type with recurrent dislocations of atoms: ‘homologous series’ of molybdenum and tungsten oxides. Acta Crystallogr 6, 495–500 (1953)

    Article  Google Scholar 

  79. Wesmann, J.A.R., Kuroda, S., Espallargas, N.: The role of oxide tribofilms on friction and wear of different thermally sprayed WC–CoCr. J. Therm. Spray Technol. 26(3), 492–502 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Director, VNIT, for providing necessary facilities in carrying out this investigation and TEQIP II grant, F.NO. 16-6/2015-TS-VII, GOI, MHRD, India, for financial assistance. The authors are also thankful to Sprint Testing Solutions laboratory, Mumbai, for assistance in XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitesh Vashishtha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashishtha, N., Sapate, S.G., Gahlot, J.S. et al. Effect of Tribo-Oxidation on Friction and Wear Behaviour of HVOF Sprayed WC–10Co–4Cr Coating. Tribol Lett 66, 56 (2018). https://doi.org/10.1007/s11249-018-1006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1006-1

Keywords

Navigation