Skip to main content

Advertisement

Log in

Effect of Steel Counterface on the Dry Sliding Behaviour of a Cu-Based Metal Matrix Composite

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Pin-on-disc testing was used to investigate the friction and wear behaviour of a Cu-based metal matrix composite dry sliding against three different martensitic steels. The tests were carried out at two contact pressures (0.5 and 1 MPa) and two sliding velocities (1.57 and 7 m/s), and the results were explained by considering the characteristics of the friction layers formed on the pin and disc surfaces during sliding. At 7 m/s, pin and disc wear was very mild in every condition, because the high flash temperatures achieved during sliding induced intense oxidation of the disc asperities, irrespective of the steel disc compositions. At 1.57 m/s, the steel composition played an important role. When using a heat-treated steel and a conventional martensitic stainless steel, pin and disc wear was by ‘low-sliding speed tribo-oxidation’, regarded as mild wear. However, when using a martensitic stainless steel with a very high Cr-content and a very low C-content, i.e. by a very high oxidation resistance, pin and disc wear was by adhesion/delamination at 0.5 MPa, and thus severe in nature. The results presented herewith clearly suggest the importance of selecting suitable steel counterfaces in the optimization of the tribological systems tribological involving Cu-based metal matrix composites as a mating material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Glaeser, W.A.: Materials for Tribology, Tribology series 20. Elsevier, Amsterdam (1992)

    Google Scholar 

  2. Straffelini, G.: Friction and Wear, Methodologies for Design and Control. Springer, Basel (2015)

    Google Scholar 

  3. Mann, R., Magnier, V., Brunel, J.-F., Brunel, F., Dufrenoy, P., Henrion, M.: Relation between mechanical behavior and microstructure of a sintered material for braking application. Wear 386–387, 1–16 (2017)

    Article  Google Scholar 

  4. Peng, T., Yan, Q., Li, G., Zhang, X.: The influence of Cu/Fe ratio on the tribological behavior of brake friction materials. Tribol. Lett. 66, 18 (2018)

    Article  Google Scholar 

  5. Peng, T., Yan, Q., Li, G., Zhang, X., Wen, Z., Jin, X.: The braking behavior of Cu-based metallic brake pad for high-speed train under different initial braking speed. Tribol. Lett. 65, 135 (2017)

    Article  Google Scholar 

  6. Xiao, Y., Zhang, Z., Yao, P., Fan, K., Zhou, H., Gong, T., Zhao, L., Deng, M.: Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. Tribol. Int. 119, 585–592 (2018)

    Article  CAS  Google Scholar 

  7. Su, L., Gao, F., Han, X., Fu, R., Zhang, E.: Tribological behavior of Copper-graphite powder third body on copper-based friction materials. Tribol. Lett. 60, 30 (2015)

    Article  Google Scholar 

  8. Xiong, X., Chen, J., Yao, P., Li, S., Huang, B.: Friction and wear behaviors and mechanisms of Fe and SiO2 in Cu-based P/M friction materials. Wear 262, 1182–1186 (2007)

    Article  CAS  Google Scholar 

  9. Yasar, I., Canakci, A., Arslan, F.: The effect of brush spring pressure on the wear behaviour of copper-graphite brushes with electrical current. Tribol. Int. 40, 1381–1386 (2007)

    Article  CAS  Google Scholar 

  10. Moustafa, S.F., El-Badry, S.A., Sanad, A.M., Kiebak, B.: Friction and wear of copper-graphite composited made with Cu-coated and uncoated powders. Wear 253, 699–710 (2002)

    Article  CAS  Google Scholar 

  11. Grandin, M., Wiklund, U.: Influence of mechanical and electrical load on copper/copper-graphite sliding electrical contact. Tribol. Int. 121, 1–9 (2018)

    Article  CAS  Google Scholar 

  12. Zhan, Y.Z., Zhang, G.: Mechanical mixing and wear-debris formation in the dry sliding wear of copper matrix composite. Tribol. Lett. 17, 581–592 (2004)

    Article  CAS  Google Scholar 

  13. Wilson, S., Alpas, A.T.: Wear mechanism maps for metal matrix composites. Wear 212, 41–49 (1997)

    Article  CAS  Google Scholar 

  14. Rigney, D.A., Chen, L.H., Naylor., M.G.S.: Wear processes in sliding systems. Wear 100, 195–219 (1984)

    Article  CAS  Google Scholar 

  15. Venkataraman, B., Sundararajan, G.: Correlation between the characteristics of the mechanically mixed layer and wear behaviour of aluminium, Al-7075 alloy and Al-MMCs. Wear 245, 22–38 (2000)

    Article  CAS  Google Scholar 

  16. Straffelini, G., Bonollo, F., Molinari, A., Tiziani, A.: Influence of matrix hardness on the dry sliding behaviour of 20 vol.% Al2O3-particulate-reinforced 6061 Al metal matrix composite. Wear 211, 192–197 (1997)

    Article  CAS  Google Scholar 

  17. Straffelini, G.: Experimental observations of subsurface damage and oxidative wear in Al-based metal-matrix composites. Wear 245, 216–222 (2000)

    Article  CAS  Google Scholar 

  18. Scardi, P., Leoni, M., Straffelini, G., De Giudici, G.: Microstructure of Cu–Be alloy triboxidative wear debris. Acta mater 55, 2531–2538 (2007)

    Article  CAS  Google Scholar 

  19. Quinn, T.F.J., Sullivan, J.L., Rowson, D.M.: Origins and development of oxidational wear at low ambient temperatures. Wear 94, 175–191 (1984)

    Article  CAS  Google Scholar 

  20. Stott, F.H.: The role of oxidation in the wear of alloys. Tribol. Int. 31, 61–71 (1998)

    Article  CAS  Google Scholar 

  21. Zhang, J., Alpas, A.T.: Transition between mild and severe wear in aluminium alloys. Acta Mater. 45, 513–528 (1997)

    Article  CAS  Google Scholar 

  22. Vingsbo, O., Hogmark, S.: Wear of steels. In: Rigney, D.A. (ed.) Fundamentals of Friction and Wear of Materials, pp. 41–52. ASM, Materials Park (1980)

    Google Scholar 

  23. Straffelini, G., Trabucco, D., Molinari, A.: Oxidative wear of heat-treated steels. Wear 250, 485–491 (2001)

    Article  Google Scholar 

  24. Straffelini, G., Trabucco, D., Molinari, A.: Sliding wear of austenitic and austenitic-ferritic stainless steels. Metall. Mater. Trans. 33A, 613–624 (2002)

    Article  Google Scholar 

  25. Lim, F.C., Ashby, M.F.: Wear mechanism maps. Acta metal 35, 1–24 (1987)

    Article  CAS  Google Scholar 

  26. APX4 steel: Data sheet, Aubert%Duval (http://www.aubertduval.com)

  27. ASM: Properties and Selection: Iron, Steel and High Performance Alloys, Metals Handbook, 10th edn, vol. 1, ASM, Materials Park (1992)

    Google Scholar 

  28. CRC: Handbook of Chemistry and Physics. CRC Press, Cleveland (1989–1990)

    Google Scholar 

  29. Straffelini, G., Verlinsky, S., Verma, P.C., Valota, G., Gialanella, S.: Wear and contact temperature evolution in pin-on-disc tribotesting of low metallic friction material sliding against pearlitic cast iron. Tribol. Lett. 62, 36 (2016)

    Article  Google Scholar 

  30. Riahi, A.R., Alpas, A.T.: Wear map for grey cast iron. Wear 255, 401–409 (2003)

    Article  CAS  Google Scholar 

  31. Lee, P.W., Filip, P.: Friction and wear of Cu-free and Sb-free environmental friendly automotive brake materials. Wear 302, 1404–1413 (2013)

    Article  CAS  Google Scholar 

  32. Li, W., Wang, Y., Yang, X.Z.: Frictional hardening and softening of steel 52100 during dry sliding. Tribol. Lett. 18(3), 353–357 (2005)

    Article  CAS  Google Scholar 

  33. Ashby, M.F., Kong, H.S., Abulawi, J.: T-maps: User Manual. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  34. Federici, M., Straffelini, G., Gialanella, S.: Pin-on-Disc testing of low metallic friction material sliding against HVOF coated cast iron: modelling of the contact temperature evolution. Tribol. Lett. 65, 121 (2017)

    Article  Google Scholar 

  35. Stachowiak, G.W., Batchelor, A.W.: Engineering Tribology, Tribology Series 24. Elsevier, Amsterdam (1993)

    Google Scholar 

  36. Miyoshi, K.: Solid Lubrication, Fundamentals and Applications. Marcel Dekker, Inc., New York (2001)

    Book  Google Scholar 

  37. Straffelini, G.: A simplified approach to the adhesive theory of friction. Wear 249, 79–85 (2001)

    CAS  Google Scholar 

  38. Bushan, B.: Introduction to Tribology, 2nd edn. Wiley, Hoboken (2013)

    Book  Google Scholar 

  39. Lim, S.C., Ashby, M.F., Brunton, J.H.: The effects of sliding conditions on the dry friction of metals. Acta Metal. 37, 767–772 (1989)

    Article  CAS  Google Scholar 

  40. Rabinowicz, E.: Friction and Wear of Materials, 2nd edn. Wiley, Hoboken (1995)

    Google Scholar 

Download references

Acknowledgements

The Authors wish to thank Lorena Maines and Alberto Zanellini for wear testing and characterization support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Straffelini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayashree, P., Federici, M., Bresciani, L. et al. Effect of Steel Counterface on the Dry Sliding Behaviour of a Cu-Based Metal Matrix Composite. Tribol Lett 66, 123 (2018). https://doi.org/10.1007/s11249-018-1075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1075-1

Keywords

Navigation