Skip to main content
Log in

Experiment to Investigate the Relationship Between the Third-Body Layer and the Occurrence of Squeals in Dry Sliding Contact

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Braking is an energy dissipation mechanism used to restrict the movement of vehicles. Friction brakes may induce vibrations and noise. These effects constitute a major shortcoming related to the functioning of friction braking systems. Known as brake squeal, this phenomenon involves unstable vibrations induced by coupling modes between components in frictional contact leading to large amplitude vibrations. Despite significant progress in experimental techniques and numerical modeling, the origin of squeal occurrence remains misunderstood and is still a matter of debate. It is, however, commonly admitted that squeal is affected by many different factors on both micro and macro scales. In addition, a close correlation between wear and squeal occurrence in braking system has been reported. This study examines linking the change in the third-body layer with the occurrence of squeals in sliding dry contact. A simplified customized test rig was used with a transparent glass disc and an artificial alumina third-body. Results show that squeal occurrence is strongly linked to the densification and redistribution of the third-body, as well as internal flows in the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Qs (ext):

External third-body source flow

Qs (int):

Internal third-body source flow

Qe :

Particles wear-out

Qr :

Third-body recirculation flow

Qi :

Internal third-body flow

References

  1. Dufrénoy, P., Bodovillé, G., Degallaix, G.: Damage mechanisms and thermomechanical loading of brake discs. Eur. Struct. Integr. Soc. 29, 167–176 (2002). https://doi.org/10.1016/S1566-1369(02)80073-5

    Article  Google Scholar 

  2. Lee, K., Barber, J.R.: An experimental investigation of frictionally-excited thermoelastic instability in automotive disk brakes under a drag brake application. J. Tribol. 116, 409–414 (1994)

    Article  Google Scholar 

  3. Österle, W., Dörfel, I., Prietzel, C., Rooch, H., Cristol-Bulthé, A.-L., Degallaix, G., Desplanques, Y.: A comprehensive microscopic study of third body formation at the interface between a brake pad and brake disc during the final stage of a pin-on-disc test. Wear 267, 781–788 (2009). https://doi.org/10.1016/j.wear.2008.11.023

    Article  CAS  Google Scholar 

  4. Kasem, H., Bonnamy, S., Rousseau, B., Estrade-Szwarckopf, H., Berthier, Y., Jacquemard, P.: Interdependence between wear process, size of detached particles and CO2 production during carbon/carbon composite friction. Wear 263, 1220–1229 (2007). https://doi.org/10.1016/j.wear.2007.01.077

    Article  CAS  Google Scholar 

  5. Ozcan, S., Filip, P.: Microstructure and wear mechanisms in C/C composites. Wear 259, 642–650 (2005). https://doi.org/10.1016/j.wear.2005.02.112

    Article  CAS  Google Scholar 

  6. Mortelette, L., Brunel, J.F., Boidin, X., Desplanques, Y., Dufrénoy, P., Smeets, L.: Impact of mineral fibres on brake squeal occurrences. SAE International 2009 Brake Colloquium and Exhibition. SAE International, USA (2009). https://doi.org/10.4271/2009-01-3050

    Google Scholar 

  7. Massi, F., Berthier, Y., Baillet, L.: Contact surface topography and system dynamics of brake squeal. Wear 265, 1784–1792 (2008). https://doi.org/10.1016/j.wear.2008.04.049

    Article  CAS  Google Scholar 

  8. Akay, A.: Acoustics of friction. J. Acoust. Soc. Am. 111, 1525 (2002). https://doi.org/10.1121/1.1456514

    Article  CAS  Google Scholar 

  9. Massi, F., Baillet, L., Giannini, O., Sestieri, A.: Brake squeal: linear and nonlinear numerical approaches. Mech. Syst. Signal Process. 21, 2374–2393 (2007). https://doi.org/10.1016/j.ymssp.2006.12.008

    Article  Google Scholar 

  10. Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: Automotive disc brake squeal. J. Sound Vib. 267, 105–166 (2003). https://doi.org/10.1016/S0022-460X(02)01573-0

    Article  Google Scholar 

  11. Ouyang, H., Nack, W., Yuan, Y., Chen, F.: Numerical analysis of automotive disc brake squeal: a review. Int. J. Veh. Noise Vib. 1, 207–231 (2005). https://doi.org/10.1504/IJVNV.2005.007524

    Article  Google Scholar 

  12. Giannini, O., Akay, A., Massi, F.: Experimental analysis of brake squeal noise on a laboratory brake setup. J. Sound Vib. 292, 1–20 (2006). https://doi.org/10.1016/j.jsv.2005.05.032

    Article  Google Scholar 

  13. Conglin, D., Jiliang, M., Chengqing, Y., Xiuqin, B., Tian, Y.: Vibration and noise behaviors during stick—slip friction. Tribol. Lett. (2019). https://doi.org/10.1007/s11249-019-1216-1

    Article  Google Scholar 

  14. Massi, F., Giannini, O., Baillet, L.: Brake squeal as dynamic instability: an experimental investigation. J. Acoust. Soc. Am. 120, 1388–1398 (2006). https://doi.org/10.1121/1.2228745

    Article  Google Scholar 

  15. Bonnay, K., Magnier, V., Brunel, J.F., Dufrénoy, P., De Saxcé, G.: Influence of geometry imperfections on squeal noise linked to mode lock-in. Int. J. Solids Struct. 75–76, 99–108 (2015). https://doi.org/10.1016/j.ijsolstr.2015.08.004

    Article  Google Scholar 

  16. Godet, M.: The third-body approach: A mechanical view of wear. Wear 100, 437–452 (1984). https://doi.org/10.1016/0043-1648(84)90025-5

    Article  Google Scholar 

  17. Berthier, Y.: Maurice Godet’s third body. Tribol. Ser. 31, 21–30 (1996). https://doi.org/10.1016/S0167-8922(08)70766-1

    Article  Google Scholar 

  18. Jacko, M.G., Tsang, P.H.S., Rhee, S.K.: Wear debris compaction and friction film formation of polymer composites. Wear 133, 23–38 (1989). https://doi.org/10.1016/0043-1648(89)90110-5

    Article  CAS  Google Scholar 

  19. Österle, W., Urban, I.: Friction layers and friction films on PMC brake pads. Wear 257, 215–226 (2004). https://doi.org/10.1016/j.wear.2003.12.017

    Article  CAS  Google Scholar 

  20. Eriksson, M., Lord, J., Jacobson, S.: Wear and contact conditions of brake pads: dynamical in situ studies of pad on glass. Wear 249, 272–278 (2001). https://doi.org/10.1016/S0043-1648(01)00573-7

    Article  CAS  Google Scholar 

  21. Desplanques, Y., Degallaix, G.: Interactions between third-body flows and localisation phenomena during railway high-energy stop braking. SAE Int. J. Passeng. Cars Mech. Syst. 1, 1267–1275 (2008). https://doi.org/10.4271/2008-01-2583

    Article  Google Scholar 

  22. Desplanques, Y., Degallaix, G.: Genesis of the third-body at the pad-disc interface: case study of sintered metal matrix composite lining material. SAE Int. J. Mater. Manf. 2, 25–32 (2009). https://doi.org/10.4271/2009-01-3053

    Article  Google Scholar 

  23. Lee, S., Jang, H.: Effect of plateau distribution on friction instability of brake friction materials. Wear 400–401, 1–9 (2018). https://doi.org/10.1016/j.wear.2017.12.015

    Article  CAS  Google Scholar 

  24. Bergman, F., Eriksson, M., Jacobson, S.: Influence of disc topography on generation of brake squeal. Wear 225–229, 621–628 (1999). https://doi.org/10.1016/S0043-1648(99)00064-2

    Article  Google Scholar 

  25. Rhee, S.K., Jacko, M.G., Tsang, P.H.S.: The role of friction film in friction, wear and noise of automotive brakes. Wear 146, 89–97 (1991). https://doi.org/10.1016/0043-1648(91)90226-K

    Article  Google Scholar 

  26. Hetzler, H., Willner, K.: On the influence of contact tribology on brake squeal. Tribol. Int. 46, 237–246 (2012). https://doi.org/10.1016/j.triboint.2011.05.019

    Article  Google Scholar 

  27. Magnier, V., Naidoo Ramasami, D., Brunel, J.F., Dufrénoy, P., Chancelier, T.: History effect on squeal with a mesoscopic approach to friction materials. Tribol. Int. 115, 600–607 (2017). https://doi.org/10.1016/j.triboint.2017.06.031

    Article  Google Scholar 

  28. Richard, D., Iordanoff, I., Renouf, M., Berthier, Y.: Thermal study of the dry sliding contact with third body presence. J. Tribol. 130, 031404 (2008). https://doi.org/10.1115/1.2913540

    Article  Google Scholar 

  29. Müller, M., Ostermeyer, G.P.: A Cellular Automaton model to describe the three-dimensional friction and wear mechanism of brake systems. Wear 263, 1175–1188 (2007). https://doi.org/10.1016/j.wear.2006.12.022

    Article  CAS  Google Scholar 

  30. Ostermeyer, G.P., Müller, M.: New insights into the tribology of brake systems. Proc. Inst. Mech. Eng. Part D 222, 1167–1200 (2008).https://doi.org/10.1243/09544070JAUTO595

    Article  Google Scholar 

  31. Österle, W., Orts-gil, G., Gross, T., Deutsch, C., Hinrichs, R., Vasconcellos, M.A.Z.: Impact of high energy ball milling on the nanostructure of magnetite—graphite and magnetite—graphite—molybdenum disulphide blends. Mater. Charact. 86, 28–38 (2013). https://doi.org/10.1016/j.matchar.2013.09.007

    Article  CAS  Google Scholar 

  32. Dmitriev, A. I., Österle, W.: Modelling the sliding behaviour of tribofilms forming during automotive braking: impact of loading parameters and property range of constituents. Tribol. Lett. 53, 337–351 (2013). https://doi.org/10.1007/s11249-013-0274-z

    Article  Google Scholar 

  33. Magnier, V., Brunel, J.F., Dufrénoy, P.: Impact of contact stiffness heterogeneities on friction-induced vibration. Int. J. Solids Struct. 51, 1662–1669 (2014). https://doi.org/10.1016/j.ijsolstr.2014.01.005

    Article  Google Scholar 

  34. Kasem, H., Bonnamy, S., Berthier, Y., Jacquemard, P.: Characterization of surface grooves and scratches induced by friction of C/C composites at low and high temperatures. Tribol. Int. 43, 1951–1959 (2010). https://doi.org/10.1016/j.triboint.2010.03.004

    Article  CAS  Google Scholar 

  35. Cristol-Bulthé, A.-L., Desplanques, Y., Degallaix, G.: Coupling between friction physical mechanisms and transient thermal phenomena involved in pad–disc contact during railway braking. Wear 263, 1230–1242 (2007). https://doi.org/10.1016/j.wear.2006.12.052

    Article  CAS  Google Scholar 

  36. Davin, E., Cristol, A., Brunel, J., Desplanques, Y.: Wear mechanisms alteration at braking interface through atmosphere modification. Wear 426–427, 1094–1101 (2019). https://doi.org/10.1016/j.wear.2019.01.057

    Article  CAS  Google Scholar 

  37. Duboc, M., Magnier, V., Brunel, J., Dufrénoy, P., Chancelier, T.: Influence of contact conditions and pad geometry on disc brake squeal noise. In: European Conference on Braking, JEF2010. pp. 247–254 (2010)

Download references

Acknowledgements

The present research work has been supported by the ELSAT2020 project co-financed by the European Union with the European Regional Development Fund, the French State and the Hauts de France Region Council. The authors gratefully acknowledge the support of these institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Brunel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singla, N., Brunel, JF., Mège-Revil, A. et al. Experiment to Investigate the Relationship Between the Third-Body Layer and the Occurrence of Squeals in Dry Sliding Contact. Tribol Lett 68, 4 (2020). https://doi.org/10.1007/s11249-019-1244-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1244-x

Keywords

Navigation