Skip to main content
Log in

The use of yellow mealworm (T. molitor) as alternative source of protein in poultry diets: a review

  • Reviews
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Protein sources are known to be the second largest component in the poultry sector. Traditionally, fish and soya-bean meals are known to supply very good protein; however, these are restricted in supply and more expensive than energy sources. The prices of soya-bean meal are currently high and tend to fluctuate with changes in climatic conditions and social situations in the countries where it is produced. Developing countries like South Africa have made enormous investments in soya-bean production, despite that the country still imports considerable volumes of this crop and is not self-sufficient. This then means that there is an urgent need to seek for alternative and cost-effective protein sources that can provide the same nutrients as soya-bean and fish meal for poultry production. Tenebrio molitor L. which is commonly known as yellow mealworm has a huge potential to substitute commonly used protein sources in poultry diets. Mealworms are easy to breed and do not require large area for production. Moreover, they have high nutritional value comparable to that of soya-bean and fishmeal. However, the only limiting nutrient for mealworms is calcium which can be easily supplemented in the diets. Therefore, this review sets out to explore the importance of replacing soya bean with mealworms in poultry diets. Furthermore, the life cycle of meal worms will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adeniji, A.A., 2007. Effect of replacing groundnut cake with maggot meal in the diet of broilers. International Journal of Poultry Science, 6(11), 822–825.

    Google Scholar 

  • Aguilar-Miranda, E.D., López, M.G., Escamilla-Santana, C. and Barba de la Rosa, A.P., 2002. Characteristics of maize flour tortilla supplemented with ground Tenebrio molitor larvae. Journal of Agricultural and Food Chemistry, 50(1), 192–195.

    CAS  PubMed  Google Scholar 

  • Ballitoc, D.A. and Sun, S., 2013. Ground yellow mealworms (Tenebrio molitor L.) feed supplementation improves growth performance and carcass yield characteristics in broilers. Open Science Repository Agriculture, (open-access), p.e23050425.

  • Barker, D., Fitzpatrick, M.P., Dierenfeld, E.S., 1998. Nutrient composition of selected whole invertebrates. Zoo Biology 17, 123–134

    CAS  Google Scholar 

  • Belforti, M., Gai, F., Lussiana, C., Renna, M., Malfatto, V., Rotolo, L., De Marco, M., Dabbou, S., Schiavone, A., Zoccarato, I., & Gasco, L (2015) Tenebrio Molitor Meal in Rainbow Trout (Oncorhynchus Mykiss) Diets: Effects on Animal performance, nutrient Digestibility and Chemical Composition of Fillets, Italian Journal of Animal Science, 14:4, 4170, DOI:https://doi.org/10.4081/ijas.2015.4170

    Article  Google Scholar 

  • Berggreen, I.E., Offenberg, J., Calis, M. and Heckmann, L.H., 2018. Impact of density, reproduction period and age on fecundity of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Journal of Insects as Food and Feed, 4(1), 43–50.

    Google Scholar 

  • Biasato, I., De Marco, M., Rotolo, L., Renna, M., Lussiana, C., Dabbou, S., Capucchio, M.T., Biasibetti, E., Costa, P., Gai, F. and Pozzo, L., 2016. Effects of dietary Tenebrio molitor meal inclusion in free-range chickens. Journal of Animal Physiology and Animal Nutrition, 100(6), 1104–1112.

    CAS  PubMed  Google Scholar 

  • Biasato, I., Gasco, L., De Marco, M., Renna, M., Rotolo, L., Dabbou, S., Capucchio, M.T., Biasibetti, E., Tarantola, M., Sterpone, L. and Cavallarin, L., 2017. Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chickens: effects on growth performance, gut morphology, and histological findings. Poultry Science, 97(2), 540–548.

    Google Scholar 

  • Bilby, L. W. & Widdowson, E. M. 1971. Chemical composition of growth in nestling blackbirds and thrushes. British Journal of Nutrition. 25: 127–134.

    CAS  PubMed  Google Scholar 

  • Bondari, K. and Sheppard, D.C., 1981. Soldier fly larvae as feed in commercial fish production. Aquaculture, 24, 103–109.

    Google Scholar 

  • Bovera, F., Piccolo, G., Gasco, L., Marono, S., Loponte, R., Vassalotti, G., Mastellone, V., Lombardi, P., Attia, Y.A. and Nizza, A., 2015. Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. British Poultry Science, 56(5), 569–575.

    CAS  PubMed  Google Scholar 

  • Bovera, F., Loponte, R., Marono, S., Piccolo, G., Parisi, G., Iaconisi, V., Gasco, L. and Nizza, A., 2016. Use of Tenebrio molitor larvae meal as protein source in broiler diet: effect on growth performance, nutrient digestibility, and carcass and meat traits. Journal of Animal Science, 94(2), 639–647.

    CAS  PubMed  Google Scholar 

  • Broekman, H., Knulst, A., den Hartog Jager, S., Monteleone, F., Gaspari, M., De Jong, G., Houben, G. and Verhoeckx, K., 2015. Effect of thermal processing on mealworm allergenicity. Molecular Nutrition & Food Research, 59(9), 1855–1864.

    CAS  Google Scholar 

  • Bukkens, S.G., 1997. The nutritional value of edible insects. Ecology of Food and Nutrition, 36(2–4), 287–319.

    Google Scholar 

  • Codex Alimentarius Commission Joint FAO/WHO Food Standards Programme and World Health Organization, 2008. Codex alimentarius commission: procedural manual. Food & Agriculture Organisation.

  • Collavo, A.L.B.E.R.T.O., Glew, R.H., Huang, Y.S., Chuang, L.T., Bosse, R.E.B.E.C.C.A. and Paoletti, M.G., 2005. House cricket small-scale farming. Ecological implications of minilivestock: potential of insects, rodents, frogs and snails, 27, 515–540.

  • Cotton, R.T., 1927. Notes on the Biology of the Meal Worms, Tenebrio Molitor L and T. Obscurus Fab. Annals of the Entomological Society of America, 20(1), 81–86.

    Google Scholar 

  • Crippen, T.L., Zheng, L., Sheffield, C.L., Tomberlin, J.K., Beier, R.C. and Yu, Z., 2012. Transient gut retention and persistence of Salmonella through metamorphosis in the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae). Journal of Applied Microbiology, 112(5), 920–926.

    CAS  PubMed  Google Scholar 

  • Deforliart, G.R. (1992) Insects as human food: Gene DeFoliart discusses some nutritional and economic aspects. Crop Protection 11 (Science Publishers, INC.), 395-399.

  • Dreyer, J.J. and Wehmeyer, A.S., 1982. Nutritive value of Mopanie worms. South African Journal of Science, Volume 78, P33–35

    Google Scholar 

  • Finke, M.D., 2002. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biology: Published in affiliation with the American Zoo and Aquarium Association, 21(3), 269–285.

    CAS  Google Scholar 

  • Fiore, C., 1960. Effects of temperature and parental age on the life cycle of the dark mealworm, Tenebrio obscurus Fabricius. Journal of the New York Entomological Society, 68(1), 27–35.

    Google Scholar 

  • Fraenkel, G., 1950. The nutrition of the mealworm, Tenebrio molitor L. (Tenebrionidae, Coleoptera). Physiological Zoology, 23(2), 92–108.

    CAS  PubMed  Google Scholar 

  • Grau, T. Vilcinskas, A. and Joop G., 2017. Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. DE GRUYTER. Zeitschrift fur Naturforschung, A journal of Physical Science 72(9–10c): 337–349

    CAS  Google Scholar 

  • Hardouin, J. and Mahoux, G., 2003. Zootechnie d'insects-Breeding and use for the benefit of man and certain animals. In: Bureau for the exchange and distribution of information on mini-livestock (BEDIM) 164pp

  • Harrell, P.E. and Bailer, J., 2004. Pass the mealworms, please: Using mealworms to develop science process skills. Science Activities: Classroom Projects and Curriculum Ideas, 41(2), 31–36.

    Google Scholar 

  • Hill, D.S., 2002. Pests of stored foodstuffs and their control. Springer Science & Business Media.

  • Hussain, I., Sarzamin, K., Asad, S., Naila, C., Rafiullah, K., Waqas, A., Naseer, A., 2017. Mealworm (Tenebrio molitor) as potential alternative source of protein supplementation in broiler. International Journal Biological Science. 10:255–262.

    CAS  Google Scholar 

  • Iaconisi, V., Marono, S., Parisi, G., Gasco, L., Genovese, L., Maricchiolo, G., Bovera, F. and Piccolo, G., 2017. Dietary inclusion of Tenebrio molitor larvae meal: Effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquaculture, 476, 49–58.

    Google Scholar 

  • Islam, M.M. and Yang, C.J., 2016. Efficacy of mealworm and super mealworm larvae probiotics as an alternative to antibiotics challenged orally with Salmonella and E. coli infection in broiler chicks. Poultry Science, 96(1), 27–34.

    PubMed  Google Scholar 

  • Khan, S., Naz, S., Sultan, A., Alhidary, I.A., Abdelrahman, M.M., Khan, R.U., Khan, N.A., Khan, M.A. and Ahmad, S., 2016. Worm meal: a potential source of alternative protein in poultry feed. World's Poultry Science Journal, 72(1), 93–102.

    Google Scholar 

  • Khan, S., Khan, R.U., Alam, W. and Sultan, A., 2017. Evaluating the nutritive profile of three insect meals and their effects to replace soya bean in broiler diet. Journal of Animal Physiology and Animal Nutrition, 102(2), e662-e668.

    PubMed  Google Scholar 

  • Khan, S., Khan, R.U., Alam, W. and Sultan, A., 2018. Evaluating the nutritive profile of three insect meals and their effects to replace soya bean in broiler diet. Journal of animal physiology and animal nutrition, 102(2), pp.e662-e668.

    PubMed  Google Scholar 

  • Khempaka, S., Chitsatchapong, C. and Molee, W., 2011. Effect of chitin and protein constituents in shrimp head meal on growth performance, nutrient digestibility, intestinal microbial populations, volatile fatty acids, and ammonia production in broilers. Journal of Applied Poultry Research, 20(1), 1–11.

    CAS  Google Scholar 

  • Kim, S.Y., Park, J.B., Lee, Y.B., Yoon, H.J., Lee, K.Y. and Kim, N.J., 2015. Growth characteristics of mealworm Tenebrio molitor. Journal of Sericultural and Entomological Science, 53(1), 1–5

    CAS  Google Scholar 

  • Klunder, H.C., Wolkers-Rooijackers, J., Korpela, J.M. and Nout, M.J.R., 2012. Microbiological aspects of processing and storage of edible insects. Food Control, 26(2), 628–631.

    Google Scholar 

  • Li, L., Zhao, Z. and Liu, H., 2013. Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronautica, 92(1), 103–109.

    CAS  Google Scholar 

  • Ludwig, D., 1956. Effects of temperature and parental age on the life cycle of the mealworm, Tenebrio molitor Linnaeus (Coleoptera, Tenebrionidae). Annals of the Entomological Society of America, 49(1), 12–15.

    Google Scholar 

  • Makkar, H.P., Tran, G., Heuzé, V. and Ankers, P., 2014. State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1–33.

    CAS  Google Scholar 

  • Manojlovic, B., 1987. A contribution to the study of the influence of the feeding of imagos and of climatic factors on the dynamics of oviposition and on the embryonal development of yellow mealworm Tenebrio molitor L. (Coleoptera: Tenebrionidae). Zastita bilja (Yugoslavia).

  • Martin, R.D., Rivers, J.P.W. and Cowgill, U.M., 1976. Culturing mealworms as food for animals in captivity. International Zoo Yearbook, 16(1), 63–70.

    Google Scholar 

  • McFarlane, J.E., 1991. Dietary sodium, potassium and calcium requirements of the house cricket, Acheta domesticus (L.). Comparative biochemistry and physiology. A, Comparative physiology, 100(1), 217–220.

    CAS  Google Scholar 

  • Miglietta, P.P., De Leo F, Ruberti, M., Massari, S., 2015. Mealworms for food: a water footprint perspective. Water 7:6190–203.

    CAS  Google Scholar 

  • Miryam, D., Bar, P.S.T., Oscherov, M.E., 2000. Ciclo de Vida de Tenebrio molitor (Coleoptera, Tenebrionidae) en Condiciones Experimentales. Methods.

  • Moreki, J.C., Tiroesele, B. and Chiripasi, S.C., 2012. Prospects of utilizing insects as alternative sources of protein in poultry diets in Botswana: a review. Journal of Animal Science Advances, 2(8), 649–658.

    Google Scholar 

  • Moyo, A.A., Bimbo, F.M., Adeyoyin, K.M., Nnaemeka, A.V., Oluwatoyin, G. and Oladeji, A.V., 2014. Seasonal ataxia: a case report of a disappearing disease. African Health Sciences, 14(3), 769–771.

    PubMed Central  Google Scholar 

  • Mupeta, B., Coker, R., Zaranyika, E., (2003). The added value of sunflower performance of indigenous chickens fed a reduce-fibre sunflower cake diet in pens and on free range. www.dfid.gov.uk/r4d/pdf/outputs/R7524e.pdf

  • Nakagaki, B.J. and Defoliart, G.R., 1991. Comparison of diets for mass-rearing Acheta domesticus (Orthoptera: Gryllidae) as a novelty food, and comparison of food conversion efficiency with values reported for livestock. Journal of Economic Entomology, 84(3), 891–896.

    Google Scholar 

  • Oonincx, D.G. and De Boer, I.J., 2012. Environmental impact of the production of mealworms as a protein source for humans–a life cycle assessment. PloS one, 7(12), e51145.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oonincx, D.G., van Itterbeeck, J., Heetkamp, M.J., van den Brand, H., van Loon, J.J.A., van Huis, A., 2010. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS One 5, 1–7

    Google Scholar 

  • Oonincx, D.G., Van Broekhoven, S., Van Huis, A. and van Loon, J.J., 2015. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS One, 10(12), p.e0144601.

    PubMed  PubMed Central  Google Scholar 

  • Panini, R.L., Freitas, L.E.L., Guimarães, A.M., Rios, C., da Silva, M.F.O., Vieira, F.N., Fracalossi, D.M., Samuels, R.I., Prudêncio, E.S., Silva, C.P. and Amboni, R.D., 2017. Potential use of mealworms as an alternative protein source for Pacific white shrimp: digestibility and performance. Aquaculture, 473, 115–120.

    CAS  Google Scholar 

  • Park, J.B., Choi, W.H., Kim, S.H., Jin, H.J., Han, Y.S. and Kim, N.J., 2014. Developmental characteristics of Tenebrio molitor larvae (Coleoptera: Tenebrionidae) in different instars. International Journal of Industrial Entomology, 28(1), 5–9.

    Google Scholar 

  • Piccolo, G., Iaconisi, V., Marono, S., Gasco, L., Loponte, R., Nizza, S., Bovera, F. and Parisi, G., 2017. Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Animal Feed Science and Technology, 226, 12–20.

    Google Scholar 

  • Pielou, D.P. and Gunn, D.L., 1940. The Humidity Behaviour of the Mealworm Beetle, Tenebrio Molitor L: The Reaction to Differences of Humidity. Journal of Experimental Biology, 17(3), 286–294.

    Google Scholar 

  • Pölkki, M., Krams, I., Kangassalo, K. and Rantala, M.J., 2012. Inbreeding affects sexual signalling in males but not females of Tenebrio molitor. Biology Letters, p.rsbl20111135. 247-276.

    Google Scholar 

  • Punzo, F. and Mutchmor, J.A., 1980. Effects of temperature, relative humidity and period of exposure on the survival capacity of Tenebrio molitor (Coleoptera: Tenebrionidae). Journal of the Kansas Entomological Society, 260–270.

  • Ramos-Elorduy, J., 1997: Insects: a sustainable source of food? Ecology of Food and Nutrition 36

    Google Scholar 

  • Ramos-Elorduy, J., González, E.A., Hernández, A.R. and Pino, J.M., 2002. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. Journal of Economic Entomology, 95(1), 214–220.

    PubMed  Google Scholar 

  • Ravzanaadii, N., Kim, S.H., Choi, W.H., Hong, S.J. and Kim, N.J., 2012. Nutritional value of mealworm, Tenebrio molitor as food source. International Journal of Industrial Entomology, 25(1), 93–98.

    Google Scholar 

  • Reckler, M., (2015) Allergenic risk of eating mealworm. Molecular Nutrition and Food Research/wiley-VCH

  • Roche, A.J., Cox, N.A., Richardson, L.J., Buhr, R.J., Cason, J.A., Fairchild, B.D. and Hinkle, N.C., 2009. Transmission of Salmonella to broilers by contaminated larval and adult lesser mealworms, Alphitobius diaperinus (Coleoptera: Tenebrionidae). Poultry Science, 88(1), 44–48.

    CAS  PubMed  Google Scholar 

  • Rumpold, B.A. and Schlüter, O.K., 2013. Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57(5), 802–823.

    CAS  Google Scholar 

  • Rumpold, B.A., Fröhling, A., Reineke, K., Knorr, D., Boguslawski, S., Ehlbeck, J. and Schlüter, O., 2014. Comparison of volumetric and surface decontamination techniques for innovative processing of mealworm larvae (Tenebrio molitor). Innovative Food Science & Emerging Technologies, 26, 232–241.

    Google Scholar 

  • Siemianowska, E., Kosewska, A., Aljewicz, M., Skibniewska, K.A., Polak-Juszczak, L., Jarocki, A. and Jędras, M., 2013. Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agricultural Sciences, 4(06), 287.

    Google Scholar 

  • Simon, E., Baranyai, E., Braun, M., Fábián, I. and Tóthmérész, B., 2013. Elemental concentration in mealworm beetle (Tenebrio molitor L.) during metamorphosis. Biological Trace Element Research, 154(1), 81–87.

    CAS  PubMed  Google Scholar 

  • Spencer, W. and Spencer, J., 2006. Management guideline manual for invertebrate live food species. Amsterdam: EAZA Terrestrial Invertebrate TAG.

    Google Scholar 

  • Steinfeld, H., Gerber, P., Wassenaar, T.D., Castel, V., Rosales, M., Rosales, M. and de Haan, C., 2006. Livestock’s long shadow: environmental issues and options. Food & Agriculture Organization.

  • Tanaka, Y., Honda, H., Ohsawa, K., Yamamoto, I., 1986. A sex attractant of the yellow mealworm, Tenebrio molitor L., and its role in the mating behaviour. Journal of Pesticide Science. 11, 49–55.

    CAS  Google Scholar 

  • Tracey, K.M., 1958. Effects of parental age on the life cycle of the mealworm, Tenebrio molitor Linnaeus. Annals of the Entomological Society of America, 51(5), 429–432.

    Google Scholar 

  • Van Broekhoven, S., Oonincx, D.G., Van Huis, A. and Van Loon, J.J., 2015. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. Journal of Insect Physiology, 73, 1–10.

    PubMed  Google Scholar 

  • Van Broekhoven, S., Bastiaan-Net, S., de Jong, N.W. and Wichers, H.J., 2016. Influence of processing and in vitro digestion on the allergic cross-reactivity of three mealworm species. Food chemistry, 196, pp.1075–1083.

    CAS  PubMed  Google Scholar 

  • Van der Klis, J.D. and Jansman, A.J.M., 2002. ln: “Nutrition and Health of the Gastrointestinal Tract” eds: Blck, l\/iD, Vahl, HA de Lange, L., van de Braak, AE, Hemke, G. and Hessing, M.

  • Van Huis, A., 2010. Opinion: bugs can solve food crisis. The Scientist. http://www.The-scientist.com.

  • Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G. and Vantomme, P., 2013. Edible insects: future prospects for food and feed security (No. 171). Food and Agriculture Organization of the United Nations.

  • Van Zyl, C. and Malan, A.P., 2015. Cost-effective culturing of Galleria mellonella and Tenebrio molitor and entomopathogenic nematode production in various hosts. African Entomology, 23(2), 361–375.

    Google Scholar 

  • Vandeweyer, D., Crauwels, S., Lievens, B. and Van Campenhout, L., 2017. Microbial counts of mealworm larvae (Tenebrio molitor) and crickets (Acheta domesticus and Gryllodes sigillatus) from different rearing companies and different production batches. International journal of food microbiology, 242, 13–18.

    CAS  PubMed  Google Scholar 

  • Wallace, P.A, Nyameasem, J.K, Aboagye, G.A, Affedzie-Obresi, S, Nkegbe, K, Murray, F, Botchway, V, Karbo, N, Leschen, W, Maquart, P.O and Clottey, V., 2018. Effects of replacing fishmeal with black soldier fly larval meal in the diets of grower-finishing guinea fowls reared under tropical conditions. Tropical Animal Health and Production 50:1499-1507. https://doi.org/10.1007/s11250-018-1588-5

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., Zhai, S. W., Zhang, C. X., Bai, Y. Y., An, S. H. & Xu, Y. N., 2005. Evaluation on nutritional value of field crickets as a poultry feedstuff. Asian-Australasian Journal of Animal Sciences. 18(5): 667–670

    Google Scholar 

  • Wang, J., Yun, B., Xue, M., Wu, X., Zheng, Y. and Li, P., 2012. Apparent digestibility coefficients of several protein sources, and replacement of fishmeal by porcine meal in diets of Japanese seabass, Lateolabrax japonicus, are affected by dietary protein levels. Aquaculture Research, 43(1), 117–127.

    Google Scholar 

  • Wynants, E., Crauwels, S., 2017. Effect of post-harvest starvation and rinsing on the microbial numbers and bacterial community of mealworm larvae

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mabelebele.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selaledi, L., Mbajiorgu, C.A. & Mabelebele, M. The use of yellow mealworm (T. molitor) as alternative source of protein in poultry diets: a review. Trop Anim Health Prod 52, 7–16 (2020). https://doi.org/10.1007/s11250-019-02033-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-019-02033-7

Keywords

Navigation