Skip to main content

Advertisement

Log in

The prebiotic potential of brewers’ spent grain on livestock’s health: a review

  • Reviews
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The increasing interest from the feed as a source of energy towards specific nutrient-yielding compounds in feeds is amongst the latest developments from scientific and industrial communities. Apart from brewers’ spent grain (BSG) being relatively inexpensive feed source, nutritious with high crude protein and minerals, recent studies have explored its potential as a source of prebiotics. Prebiotics are certain feeds that are comprised of non-digestive polysaccharides that can be fed to animals and modulate the balance and activities of microbial populations in the gut. The BSG contains arabinoxylans and β-glucans whereby when consumed by animals, they promote the activity of beneficial bacteria particularly species from three genera of Bifidobacterium, Enterococcus, and Lactobacillus. The increased degradation of fibrous feed accelerates the production of short-chain fatty acids (SCFA) which serve as the primary energy sources for the anaerobic microbes. This elevated concentration of SCFA stimulates numerous physio-biological functions which include intestinal nutrients absorption, glucose balance, improvement of immunity, lipid metabolism, and suppression of pathogens such as Salmonella and Escherichia coli. To capitalize on the prebiotic potential of BSG, certain considerations need to be well taken care of and these include possible microbial dysfunctions such as rumen acidosis, different responses rates of animals due to variations in health status, age, and species as well as feed safety issues especially mycotoxin contamination which can jeopardize its inherited prebiotic benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ainsworth, P., İbanoğlu, Ş., Plunkett, A., İbanoğlu, E., & Stojceska, V. (2007). Effect of brewers spent grain addition and screw speed on the selected physical and nutritional properties of an extruded snack. Journal of Food Engineering, 81(4), 702–709. https://doi.org/10.1016/J.JFOODENG.2007.01.004

    Article  CAS  Google Scholar 

  • Albright, J. L. (1993). Feeding Behavior of Dairy Cattle. Journal of Dairy Science, 76(2), 485–498. https://doi.org/10.3168/jds.S0022-0302(93)77369-5

    Article  Google Scholar 

  • Aliyu, S., & Bala, M. (2011). Brewer’s spent grain: a review of its potentials and applications. African Journal of Biotechnology, 76(2), 485–498. https://doi.org/10.5897/AJBx10.006

    Article  Google Scholar 

  • Awad, W. A., Ghareeb, K., Abdel-Raheem, S., & Böhm, J. (2009). Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poultry Science, 88(1), 49–56.

    CAS  PubMed  Google Scholar 

  • Bach Knudsen, K. E. (2015). Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health. Advances in Nutrition, 6(2), 206–213.

    PubMed  PubMed Central  Google Scholar 

  • Barry, K. A., Vester, B. M., & Fahey, G. C. (2009). Prebiotics in companion and livestock animal nutrition. Prebiotics and Probiotics Science and Technology, 353–463.

  • Bastos, R., Coelho, E., & Coimbra, M. A. (2018). Arabinoxylans from cereal by-products: Insights into structural features, recovery, and applications. In Sustainable Recovery and Reutilization of Cereal Processing By-Products (pp. 227–251). Elsevier.

  • Callaway, T. R., Edrington, T. S., Harvey, R. B., Anderson, R. C., & Nisbet, D. J. (2012). Prebiotics in food animals, a potential to reduce foodborne pathogens and disease. Romanian Biotechnological Letters, 17(6), 7809.

    Google Scholar 

  • Chang, Q., Wang, W., Regev-Yochay, G., Lipsitch, M., & Hanage, W. P. (2015). Antibiotics in agriculture and the risk to human health: how worried should we be? Evolutionary Applications, 8(3), 240–247.

    PubMed  Google Scholar 

  • Chanie, D., & Fievez, V. (2017). Review on Preservation and Utilization of Wet Brewery Spent Grain as Concentrate Replacement Feed for Lactating Dairy Cows. Journal of Animal Health and Production. https://doi.org/10.14737/journal.jahp/2017/5.1.10.13

  • Chen, Z., Li, S., Fu, Y., Li, C., Chen, D., & Chen, H. (2019). Arabinoxylan structural characteristics, interaction with gut microbiota and potential health functions. Journal of Functional Foods, 54, 536–551.

    CAS  Google Scholar 

  • Chorvatovičová, D., Machová, E., Šandula, J., & Kogan, G. (1999). Protective effect of the yeast glucomannan against cyclophosphamide-induced mutagenicity. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 444(1), 117–122.

    Google Scholar 

  • Council, N. R (2012). Nutrient requirements of swine. National Academies Press.

  • Damen, B., Verspreet, J., Pollet, A., Broekaert, W. F., Delcour, J. A., & Courtin, C. M. (2011). Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence. Molecular Nutrition & Food Research, 55(12), 1862–1874.

    CAS  Google Scholar 

  • Daou, C., & Zhang, H. (2012). Oat beta-glucan: its role in health promotion and prevention of diseases. Comprehensive Reviews in Food Science and Food Safety, 11(4), 355–365.

    CAS  Google Scholar 

  • Eeckhaut, V., Van Immerseel, F., Dewulf, J., Pasmans, F., Haesebrouck, F., Ducatelle, R., … Broekaert, W. F. (2008). Arabinoxylooligosaccharides from wheat bran inhibit Salmonella colonization in broiler chickens. Poultry Science, 87(11), 2329–2334.

    CAS  PubMed  Google Scholar 

  • El Khoury, A., & Atoui, A. (2010). Ochratoxin A: general overview and actual molecular status. Toxins, 2(4), 461–493.

    PubMed  PubMed Central  Google Scholar 

  • El-Shafey, E. I., Gameiro, M. L. F., Correia, P. F. M., & De Carvalho, J. M. R. (2004). Dewatering of brewer’s spent grain using a membrane filter press: a pilot plant study. Separation Science and Technology, 39(14), 3237–3261.

    CAS  Google Scholar 

  • Ferrari, C. K. B., & Torres, E. A. F. da S. (2003). Biochemical pharmacology of functional foods and prevention of chronic diseases of aging. Biomedicine & Pharmacotherapy, 57(5–6), 251–260.

    CAS  Google Scholar 

  • Fox, G. P. (2009). Beer and arabinoxylan. In Beer in health and disease prevention (pp. 309–316). Elsevier.

  • Franklin, S. T., Newman, M. C., Newman, K. E., & Meek, K. I. (2005). Immune parameters of dry cows fed mannan oligosaccharide and subsequent transfer of immunity to calves. Journal of Dairy Science, 88(2), 766–775.

    CAS  PubMed  Google Scholar 

  • Gaggìa, F., Mattarelli, P., & Biavati, B. (2010). Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, 141, S15–S28.

    PubMed  Google Scholar 

  • Geijselaers, S. L. C., Sep, S. J. S., Claessens, D., Schram, M. T., Van Boxtel, M. P. J., Henry, R. M. A., … Schalkwijk, C. G. (2017). The role of hyperglycemia, insulin resistance, and blood pressure in diabetes-associated differences in cognitive performance—the Maastricht Study. Diabetes Care, 40(11), 1537–1547.

    CAS  PubMed  Google Scholar 

  • Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of Nutrition, 125(6), 1401–1412.

    CAS  PubMed  Google Scholar 

  • Grajek, W., Olejnik, A., & Sip, A. (2005). Probiotics, prebiotics and antioxidants as functional foods. Acta Biochimica Polonica-English Edition, 52(3), 665.

    CAS  Google Scholar 

  • Hardin, G. (1960). The competitive exclusion principle. Science, 131(3409), 1292–1297.

    CAS  PubMed  Google Scholar 

  • Hussein, H. S., & Brasel, J. M. (2001). Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology, 167(2), 101–134.

    CAS  PubMed  Google Scholar 

  • Izydorczyk, M S. (2009). Arabinoxylans. In Handbook of hydrocolloids (pp. 653–692). Elsevier.

  • Izydorczyk, Marta S, & Biliaderis, C. G. (1995). Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydrate Polymers, 28(1), 33–48.

    CAS  Google Scholar 

  • Izydorczyk, M S, & Dexter, J. E. (2008). Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products–a Review. Food Research International, 41(9), 850–868.

    CAS  Google Scholar 

  • Izydorczyk, M S, Miller, S. S., & Beattie, A. D. (2014a). Milling Food Barley: Production of Functional Fractions Enriched with β-Glucans and Other Dietary Fiber Components. Cereal Foods World, 59(6), 277–285.

    Google Scholar 

  • Izydorczyk, Marta S, McMillan, T., Bazin, S., Kletke, J., Dushnicky, L., Dexter, J., … Rossnagel, B. (2014b). Milling of Canadian oats and barley for functional food ingredients: Oat bran and barley fibre-rich fractions. Canadian Journal of Plant Science, 94(3), 573–586.

  • Jay, A. J., Parker, M. L., Faulks, R., Husband, F., Wilde, P., Smith, A. C., … Waldron, K. W. (2008). A systematic micro-dissection of brewers’ spent grain. Journal of Cereal Science, 47(2), 357–364.

    CAS  Google Scholar 

  • Kandasamy, S., Chattha, K. S., Vlasova, A. N., Rajashekara, G., & Saif, L. J. (2014). Lactobacilli and Bifidobacteria enhance mucosal B cell responses and differentially modulate systemic antibody responses to an oral human rotavirus vaccine in a neonatal gnotobiotic pig disease model. Gut Microbes, 5(5), 639–651.

    PubMed  PubMed Central  Google Scholar 

  • Kaufhold, J., Hammon, H. M., & Blum, J. W. (2000). Fructo-oligosaccharide supplementation: effects on metabolic, endocrine and hematological traits in veal calves. Journal of Veterinary Medicine Series A, 47(1), 17–29.

    CAS  PubMed  Google Scholar 

  • Keller, L. A. M., Pereyra, C. M., Cavaglieri, L. R., Dalcero, A. M., & Rosa, C. A. R. (2012). Fungi and mycotoxins from pre-and poststorage brewer’s grain intended for bovine intensive rearing. ISRN Veterinary Science, 2012.

  • Kelly, G. (2009). Inulin-type prebiotics: a review. Alternative Medicine Review, 14(1), 36–56.

    PubMed  Google Scholar 

  • Kerby, C., & Vriesekoop, F. (2017). An overview of the utilisation of brewery by-products as generated by british craft breweries. Beverages, 3(2), 24.

    Google Scholar 

  • King, A. M. Y., & Young, G. (1999). Characteristics and occurrence of phenolic phytochemicals. Journal of the American Dietetic Association, 99(2), 213–218.

    CAS  PubMed  Google Scholar 

  • Kitrytė, V., Šaduikis, A., & Venskutonis, P. R. (2015). Assessment of antioxidant capacity of brewer’s spent grain and its supercritical carbon dioxide extract as sources of valuable dietary ingredients. Journal of Food Engineering, 167, 18–24.

    Google Scholar 

  • Kleen, J. L., Hooijer, G. A., Rehage, J., & Noordhuizen, J. (2003). Subacute ruminal acidosis (SARA): a review. Journal of Veterinary Medicine Series A, 50(8), 406–414.

    CAS  PubMed  Google Scholar 

  • Kris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A. E., Hilpert, K. F., … Etherton, T. D. (2002). Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. The American Journal of Medicine, 113(9), 71–88.

    Google Scholar 

  • Križková, L., Ďuračková, Z., Šandula, J., Sasinková, V., & Krajčovič, J. (2001). Antioxidative and antimutagenic activity of yeast cell wall mannans in vitro. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 497(1–2), 213–222.

    Google Scholar 

  • Li, H., Chen, X., Xiong, L., Luo, M., Chen, X., Wang, C., … Chen, X. (2019). Stepwise enzymatic hydrolysis of alkaline oxidation treated sugarcane bagasse for the co-production of functional xylo-oligosaccharides and fermentable sugars. Bioresource Technology, 275, 345–351.

    CAS  PubMed  Google Scholar 

  • Lynch, K. M., Steffen, E. J., & Arendt, E. K. (2016). Brewers’ spent grain: a review with an emphasis on food and health. Journal of the Institute of Brewing, 122(4), 553–568.

    CAS  Google Scholar 

  • Markowiak, P., & Śliżewska, K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 10(1), 21.

    PubMed  PubMed Central  Google Scholar 

  • Marshman, E., Booth, C., & Potten, C. S. (2002). The intestinal epithelial stem cell. Bioessays, 24(1), 91–98.

    PubMed  Google Scholar 

  • Mendis, M., Leclerc, E., & Simsek, S. (2016). Arabinoxylans, gut microbiota and immunity. Carbohydrate Polymers, 139, 159–166.

    CAS  PubMed  Google Scholar 

  • Michlmayr, H., Hell, J., Lorenz, C., Böhmdorfer, S., Rosenau, T., & Kneifel, W. (2013). Arabinoxylan oligosaccharide hydrolysis by family 43 and 51 glycosidases from Lactobacillus brevis DSM 20054. Appl. Environ. Microbiol., 79(21), 6747–6754.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montagne, L., Pluske, J. R., & Hampson, D. J. (2003). A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology, 108(1–4), 95–117.

    Google Scholar 

  • Mussatto, S. I., & Mancilha, I. M. (2007). Non-digestible oligosaccharides: a review. Carbohydrate Polymers, 68(3), 587–597.

    CAS  Google Scholar 

  • Mussatto, S. I., Dragone, G., & Roberto, I. C. (2006). Brewers’ spent grain: generation, characteristics and potential applications. Journal of Cereal Science, 43(1), 1–14.

    CAS  Google Scholar 

  • Mussatto, S. I., Moncada, J., Roberto, I. C., & Cardona, C. A. (2013). Techno-economic analysis for brewer’s spent grains use on a biorefinery concept: the Brazilian case. Bioresource Technology, 148, 302–310.

    CAS  PubMed  Google Scholar 

  • Ndeh, D., & Gilbert, H. J. (2018). Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiology Reviews, 42(2), 146–164.

    CAS  PubMed  Google Scholar 

  • Nemcova, R., Bomba, A., Gancarcikova, S., Herich, R., & Guba, P. (1999). Study of the effect of Lactobacillus paracasei and fructooligosaccharides on the faecal microflora in weanling piglets. Berliner Und Munchener Tierarztliche Wochenschrift, 112(6–7), 225–228.

    CAS  PubMed  Google Scholar 

  • Niemi, P., Tamminen, T., Smeds, A., Viljanen, K., Ohra-aho, T., Holopainen-Mantila, U., … Buchert, J. (2012). Characterization of lipids and lignans in brewer’s spent grain and its enzymatically extracted fraction. Journal of Agricultural and Food Chemistry, 60(39), 9910–9917.

    CAS  PubMed  Google Scholar 

  • Ouwehand, A. C., Kirjavainen, P. V, Shortt, C., & Salminen, S. (1999). Probiotics: mechanisms and established effects. International Dairy Journal, 9(1), 43–52.

    Google Scholar 

  • Owens, F. N., Secrist, D. S., Hill, W. J., & Gill, D. R. (1998). Acidosis in cattle: a review. Journal of Animal Science, 76(1), 275–286.

    CAS  PubMed  Google Scholar 

  • Panagiotou, G., Granouillet, P., & Olsson, L. (2006). Production and partial characterization of arabinoxylan-degrading enzymes by Penicillium brasilianum under solid-state fermentation. Applied Microbiology and Biotechnology, 72(6), 1117–1124.

    CAS  PubMed  Google Scholar 

  • Papageorgiou, Maria, & Skendi, A. (2018). Introduction to cereal processing and by-products. In Sustainable Recovery and Reutilization of Cereal Processing By-Products (pp. 1–25). Elsevier.

  • Papageorgiou, M, Lakhdara, N., Lazaridou, A., Biliaderis, C. G., & Izydorczyk, M. S. (2005). Water extractable (1→ 3, 1→ 4)-β-D-glucans from barley and oats: An intervarietal study on their structural features and rheological behaviour. Journal of Cereal Science, 42(2), 213–224.

    CAS  Google Scholar 

  • Pollet, A., Van Craeyveld, V., Van de Wiele, T., Verstraete, W., Delcour, J. A., & Courtin, C. M. (2012). In vitro fermentation of arabinoxylan oligosaccharides and low molecular mass arabinoxylans with different structural properties from wheat (Triticum aestivum L.) bran and psyllium (Plantago ovata Forsk) seed husk. Journal of Agricultural and Food Chemistry, 60(4), 946–954.

    CAS  PubMed  Google Scholar 

  • SRCK Rajendran, Okolie, C. L., Udenigwe, C. C., & Mason, B. (2017). Structural features underlying prebiotic activity of conventional and potential prebiotic oligosaccharides in food and health. Journal of Food Biochemistry, 41(5), e12389.

    Google Scholar 

  • Reis, S. F., Gullón, B., Gullón, P., Ferreira, S., Maia, C. J., Alonso, J. L., … Abu-Ghannam, N. (2014). Evaluation of the prebiotic potential of arabinoxylans from brewer’s spent grain. Applied Microbiology and Biotechnology, 98(22), 9365–9373.

    CAS  PubMed  Google Scholar 

  • Rivière, A., Moens, F., Selak, M., Maes, D., Weckx, S., & De Vuyst, L. (2014). The ability of bifidobacteria to degrade arabinoxylan oligosaccharide constituents and derived oligosaccharides is strain dependent. Appl. Environ. Microbiol., 80(1), 204–217.

    PubMed  PubMed Central  Google Scholar 

  • Robertson, J. A., I’Anson, K. J. A., Treimo, J., Faulds, C. B., Brocklehurst, T. F., Eijsink, V. G. H., & Waldron, K. W. (2010). Profiling brewers’ spent grain for composition and microbial ecology at the site of production. LWT-Food Science and Technology, 43(6), 890–896.

    CAS  Google Scholar 

  • Rose, D. J., Patterson, J. A., & Hamaker, B. R. (2009). Structural differences among alkali-soluble arabinoxylans from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) brans influence human fecal fermentation profiles. Journal of Agricultural and Food Chemistry, 58(1), 493–499.

    Google Scholar 

  • Russell, J. B. (2002). Rumen microbiology and its role in ruminant nutrition. Cornell University.

  • Salminen, S., Bouley, C., Boutron, M.-C., Cummings, J. H., Franck, A., Gibson, G. R., … Rowland, I. (1998). Functional food science and gastrointestinal physiology and function. British Journal of Nutrition, 80(S1), S147–S171.

    CAS  PubMed  Google Scholar 

  • Samal, L., & Behura, N. C. (2015). Prebiotics: An emerging nutritional approach for improving gut health of livestock and poultry. Asian J. Anim. Vet. Adv, 10, 724–739.

    CAS  Google Scholar 

  • Santos, M., Jiménez, J. J., Bartolomé, B., Gómez-Cordovés, C., & Del Nozal, M. J. (2003). Variability of brewer’s spent grain within a brewery. Food Chemistry, 80(1), 17–21.

    CAS  Google Scholar 

  • Sareen, V. K., Sharma, K. C., & Singh, S. (2005). Effect of mannan oligosaccharide on the immune status of buffalo calves. Indian Journal of Animal Nutrition, 22(3), 195–197.

    Google Scholar 

  • Schley, P. D., & Field, C. J. (2002). The immune-enhancing effects of dietary fibres and prebiotics. British Journal of Nutrition, 87(S2), S221–S230.

    CAS  PubMed  Google Scholar 

  • Shim, S. (2005). Effects of prebiotics, probiotics and synbiotics in the diet of young pigs.

  • Skendi, A., Biliaderis, C. G., Lazaridou, A., & Izydorczyk, M. S. (2003). Structure and rheological properties of water soluble β-glucans from oat cultivars of Avena sativa and Avena bysantina. Journal of Cereal Science, 38(1), 15–31.

    CAS  Google Scholar 

  • Slavin, J. (2013). Fiber and prebiotics: mechanisms and health benefits. Nutrients, 5(4), 1417–1435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snelders, J., Olaerts, H., Dornez, E., Van de Wiele, T., Aura, A.-M., Vanhaecke, L., … Courtin, C. M. (2014). Structural features and feruloylation modulate the fermentability and evolution of antioxidant properties of arabinoxylanoligosaccharides during in vitro fermentation by human gut derived microbiota. Journal of Functional Foods, 10, 1–12.

    CAS  Google Scholar 

  • Spring, P., Wenk, C., Dawson, K. A., & Newman, K. E. (2000). The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poultry Science, 79(2), 205–211.

    CAS  PubMed  Google Scholar 

  • Stahl, W., Van Den Berg, H., Arthur, J., Bast, A., Dainty, J., Faulks, R. M., … Holst, B. (2002). Bioavailability and metabolism. Molecular Aspects of Medicine, 23(1–3), 39.

    CAS  PubMed  Google Scholar 

  • Stone, W. C. (2004). Nutritional approaches to minimize subacute ruminal acidosis and laminitis in dairy cattle. Journal of Dairy Science, 87, E13–E26.

    Google Scholar 

  • Thomas, K. R., & Rahman, P. (2006). Brewery wastes. Strategies for sustainability. A review. Aspects of Applied Biology.

  • Uyeno, Y., Shigemori, S., & Shimosato, T. (2015). Effect of probiotics/prebiotics on cattle health and productivity. Microbes and Environments, 30(2), 126–132.

    PubMed  PubMed Central  Google Scholar 

  • Van den Abbeele, P., Gérard, P., Rabot, S., Bruneau, A., El Aidy, S., Derrien, M., … Verstraete, W. (2011). Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Environmental Microbiology, 13(10), 2667–2680.

    CAS  PubMed  Google Scholar 

  • Vardakou, M., Palop, C. N., Christakopoulos, P., Faulds, C. B., Gasson, M. A., & Narbad, A. (2008). Evaluation of the prebiotic properties of wheat arabinoxylan fractions and induction of hydrolase activity in gut microflora. International Journal of Food Microbiology, 123(1–2), 166–170.

    CAS  PubMed  Google Scholar 

  • Vicente, J., Wolfenden, A., Torres-Rodriguez, A., Higgins, S., Tellez, G., & Hargis, B. (2007). Effect of a Lactobacillus species-based probiotic and dietary lactose prebiotic on turkey poult performance with or without Salmonella enteritidis challenge. Journal of Applied Poultry Research, 16(3), 361–364.

    Google Scholar 

  • Wang, Y. (2009). Prebiotics: Present and future in food science and technology. Food Research International, 42(1), 8–12.

    CAS  Google Scholar 

  • White, L. A., Newman, M. C., Cromwell, G. L., & Lindemann, M. D. (2002). Brewers dried yeast as a source of mannan oligosaccharides for weanling pigs. Journal of Animal Science, 80(10), 2619–2628.

    CAS  PubMed  Google Scholar 

  • Wild, C. P., Miller, J. D., & Groopman, J. D. (2015). Mycotoxin control in low-and middle-income countries. International Agency for Research on Cancer Lyon, France.

    Google Scholar 

  • Yang, S.-C., Chen, J.-Y., Shang, H.-F., Cheng, T.-Y., Tsou, S. C., & Chen, J.-R. (2005). Effect of synbiotics on intestinal microflora and digestive enzyme activities in rats. World Journal of Gastroenterology, 11(47), 7413.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda, K., Hashikawa, S., Sakamoto, H., Tomita, Y., Shibata, S., & Fukata, T. (2007). A new synbiotic consisting of Lactobacillus casei subsp. casei and dextran improves milk production in Holstein dairy cows. Journal of Veterinary Medical Science, 69(2), 205–208.

    PubMed  Google Scholar 

  • Yiannikouris, A., & Jouany, J.-P. (2002). Mycotoxins in feeds and their fate in animals: a review. Animal Research, 51(2), 81–99.

    CAS  Google Scholar 

  • Yusrizal, Y., & Chen, T. C. (2003). Effect of adding chicory fructans in feed on fecal and intestinal microflora and excreta volatile ammonia. International Journal of Poultry Science, 2(3), 188–194.

    Google Scholar 

  • Zhang, W. F., Li, D. F., Lu, W. Q., & Yi, G. F. (2003). Effects of isomalto-oligosaccharides on broiler performance and intestinal microflora. Poultry Science, 82(4), 657–663.

    CAS  PubMed  Google Scholar 

  • Zhou, X. L., Kong, X. F., Yang, X. J., & Yin, Y. L. (2012). Soybean oligosaccharides alter colon short-chain fatty acid production and microbial population in vitro. Journal of Animal Science, 90(suppl_4), 37–39.

    PubMed  Google Scholar 

  • Zhu, Y., Hassan, Y. I., Watts, C., & Zhou, T. (2016). Innovative technologies for the mitigation of mycotoxins in animal feed and ingredients—A review of recent patents. Animal Feed Science and Technology, 216, 19–29.

    CAS  Google Scholar 

  • Žikić, D., Perić, L., Ušćebrka, G., Stojanović, S., Milić, D., & Nollet, L. (2008). Effect of prebiotics in broiler breeder and broiler diets on performance and jejunum morphology of broiler chickens. 1st Mediterranean Summit of WPSA. Book of Proceedings, Porto Carras, Greece, 879–882.

Download references

Funding

This study is financially supported by the World Bank through CREATES (Centre For Research, Agricultural Advancement, Teaching Excellence And Sustainability) at The Nelson Mandela African Institution of Science and Technology (http://www.creates-nmaist.ac.tz/) in Tanzania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Joel Lao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lao, E.J., Dimoso, N., Raymond, J. et al. The prebiotic potential of brewers’ spent grain on livestock’s health: a review. Trop Anim Health Prod 52, 461–472 (2020). https://doi.org/10.1007/s11250-019-02120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-019-02120-9

Keywords

Navigation