Skip to main content
Log in

Genome-wide discovery of SNPs in candidate genes related to production and fertility traits in Sahiwal cattle

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The present study was carried out to identify genome-wide genetic markers and variants in candidate genes for production and reproduction traits in Sahiwal cattle using a cost-effective reduced representation sequencing method. A total of 258,231 genome-wide SNPs were identified in Sahiwal cattle with reference to Bos indicus genome, of which 150,231 were novel SNPs. Among the high-confidence SNPs identified, 91.86% and 27.30% were genotyped in 50% and 100% of the samples. Mapping of the identified SNPs revealed 525 SNPs in candidate genes related to production traits while 333 SNPs were mapped to candidate genes related to reproduction traits. The SNPs identified in this study will facilitate further insights on tropical adaptation, domestication history and population structure of indigenous cattle. The variants in candidate genes identified in this study will serve as useful genetic tools, in the quest for phenotype modifying nucleotide change and help in designing appropriate genetic improvement programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andersson, L., 2001. Genetic dissection of phenotypic diversity in farm animals. Nature Review Genetics, 2, 130–138.

    Article  CAS  Google Scholar 

  • Andrews, S., 2010. FastQC: A quality control tool for high throughput sequence data. Available: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 2018 December 15.

  • Auchtung, T.L., Rius, A.G., Kendall, P.E., McFadden, T.B. and Dahl, G.E., 2005. Effects of photoperiod during the dry period on prolactin, prolactin receptor, and milk production of dairy cows. Journal of Dairy Science, 88, 121–127.

    Article  CAS  PubMed  Google Scholar 

  • Ba, H., Jia, B., Wang, G., Yang, Y., Kedem, G. and Li, C., 2017. Genome-Wide SNP Discovery and Analysis of Genetic Diversity in Farmed Sika Deer (Cervus nippon) in Northeast China Using Double-Digest Restriction-Site Associated DNA Sequencing. G3: Genes, Genomes, Genetics, 7, 3169–3176.

    CAS  Google Scholar 

  • Bachelot, A. and Binart, N., 2007. Reproductive role of prolactin. Reproduction, 133, 361–369.

    Article  CAS  PubMed  Google Scholar 

  • Baird, N.A., Etter, P.D., Atwood, T.S., Currey, M.C., Shiver, A.L., Lewis, Z.A., Selker, E.U., Cresko, W.A. and Johnson, E.A., 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. Plos One, 3, e3376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baldelli, P., Hernández-Guijo, J.M., Carabelli, V., Novara, M., Cesetti, T., Andres-Mateos, E., Montiel, C. and Carbone, E., 2004. Direct and remote modulation of l-channels in chromaffin cells. Molecular Neurobiology, 29(1), 73–96.

    Article  CAS  PubMed  Google Scholar 

  • Bastian, Y., Roa-Espitia, A.L., Mújica, A. and Hernandez-González, E.O., 2010. Calpain modulates capacitation and acrosome reaction through cleavage of the spectrin cytoskeleton. Reproduction, 140, 673–684.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Aharon, I., Haim, K., Shalgi, R. and Ben-Yosef, D., 2005. Expression and possible involvement of calpain isoforms in mammalian egg activation. Reproduction, 130, 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Blott, S., Kim, J.J., Moisio, S., Schmidt-Kuntzel, A., Cornet, A., Berzi, P., Cambisano, N., Ford, C., Grisart, B., Johnson, D., Karim, L., Simon, P., Snell, R., Spelman, R., Wong, J., Vilkki, J., Georges, M., Farnir, F. and Coppieters, W., 2003. Molecular dissection of a quantitative trait locus. A phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics, 163, 253–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botstein, D., White, R.L., Skolnick, M. and Davis, R.W., 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32, 314–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brouard, J.S., Boyle, B., Ibeagha-Awemu, E.M. and Bissonnette, N., 2017. Low-depth genotyping-by-sequencing (GBS) in a bovine population: Strategies to maximize the selection of high quality genotypes and the accuracy of imputation. BMC Genetics, 18(1), 32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buchanan, F.C., Fitzsimmons, C.J., Van Kessel, A.G., Thue, T.D., Winkelman-Sim, D.C. and Schmutz, S.M., 2002. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genetics Selection Evolution, 34(1), 105.

    Article  CAS  Google Scholar 

  • Budde, L.M., Wu, C., Tilman, C., Douglas, I. and Ghosh, S., 2002. Regulation of IκBβ expression in testis. Molecular Biology of the Cell, 13(12), 4179–4194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buitenhuis, B., Janss, L.L., Poulsen, N.A., Larsen, L.B., Larsen, M.K. and Sørensen, P., 2014. Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and Danish Jersey cattle. BMC Genomics, 15(1), 1112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canavez, F.C., Luche, D.D., Stothard, P., Leite, K.R., Sousa-Canavez, J.M., Plastow, G., Meidanis, J., Souza, M.A, Feijao, P., Moore, S.S. and Camara-Lopes, L.H., 2012. Genome sequence and assembly of Bos indicus. Journal of Heredity, 103(3), 342–348.

  • Catchen, J., Hohenlohe, P.A., Bassham, S., Amores, A. and Cresko, W.A., 2013. Stacks: An analysis tool set for population genomics. Molecular Ecology, 22(11), 3124–3140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatterjee, S., Szustakowski, J.D., Nanguneri, N.R., Mickanin, C., Labow, M.A., Nohturfft, A., Dev, K.K. and Sivasankaran, R., 2009. Identification of novel genes and pathways regulating SREBP transcriptional activity. Plos one, 4(4), e5197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi, J.W., Liao, X., Stothard, P., Chung, W.H., Jeon, H.J., Miller, S.P., Choi, S.Y., Lee, J.K., Yang, B., Lee, K.T., Han, K.J., Kim, H.C., Jeong, D., Oh, J.D., Kim, N., Kim, T.H., Lee, H.K. and Lee, S.J., 2014. Whole-Genome Analyses of Korean Native and Holstein Cattle Breeds by Massively Parallel Sequencing. Plos One, 9, e101127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi, J.W., Choi, B.H., Lee, S.H., Lee, S.S., Kim, H.C, Yu, D., Chung, W.H., Lee, K.T., Chai, H.H., Cho, Y.M. and Lim, D., 2015. Whole-genome resequencing analysis of Hanwoo and Yanbian cattle to identify genome-wide SNPs and signatures of selection. Molecules and Cells, 38(5), 466–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X. and Ruden, D.M., 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2), 80–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochran, S.D., Cole, J.B., Null, D.J. and Hansen, P.J., 2013. Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle. BMC Genetics, 14(1), 49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole, J.B., VanRaden, P.M., O’Connell, J.R., Van Tassell, C.P., Sonstegard, T.S., Schnabel, R.D., Taylor, J.F. and Wiggans, G.R., 2009. Distribution and location of genetic effects for dairy traits. Journal of Dairy Science, 92(6), 2931–2946.

    Article  CAS  PubMed  Google Scholar 

  • Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T. and McVean, G., 2011. The variant call format and VCFtools. Bioinformatics, 27(15), 2156–2158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dash, S., Singh, A., Bhatia, A.K., Jayakumar, S., Sharma, A., Singh, S., Ganguly, I. and Dixit, S.P., 2018. Evaluation of Bovine High-Density SNP Genotyping Array in Indigenous Dairy Cattle Breeds. Animal Biotechnology, 29(2), 129–135.

    Article  CAS  PubMed  Google Scholar 

  • DeDonato, M.D., Peters, S.O., Mitchell, S.E., Hussain, T. and Imumorin, I.G., 2013. Genotyping-by-Sequencing (GBS): A Novel, Efficient and Cost-Effective Genotyping Method for Cattle Using Next-Generation Sequencing. Plos One, 8, e62137.

    Article  CAS  Google Scholar 

  • DiStasio, L., Destefanis, G., Brugiapaglia, A., Albera, A. and Rolando, A., 2005. Polymorphism of the GHR gene in cattle and relationship with meat production and quality. Animal Genetics, 36, 138–140.

    Article  CAS  Google Scholar 

  • Dongre, V.B., Gandhi, R.S., Raja, T.V., Avtar, S. and Balasundaram, B., 2011. Performance of different first lactation economic traits in Sahiwal cattle: a review. International Journal of Agriculture: Research and Review, 1(2), 91–96.

    Google Scholar 

  • Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S. and Mitchell, S.E., 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. Plos One, 6, e19379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleenor, D., Arumugam, R. and Freemark, M., 2006. Growth hormone and prolactin receptors in adipogenesis: STAT-5 activation, suppressors of cytokine signaling, and regulation of insulin-like growth factor I. Hormone Research in Paediatrics, 66(3), 101–110.

    Article  CAS  Google Scholar 

  • Fontanesi, L., Scotti, E., Dolezal, M., Lipkin, E., Dall’Olio, S., Zambonelli, P., Bigi, D., Davoli, R., Soller, M. and Russo, V., 2007. Bovine chromosome 20: milk production QTL and candidate gene analysis in the Italian Holstein-Friesian breed. Italian Journal of Animal Science, 6, 133–135.

    Article  Google Scholar 

  • Garcia, M.D., Michal, J.J., Gaskins, C.T., Reeves, J.J., Ott, T.L., Liu, Y. and Jiang, Z., 2006. Significant association of the calpastatin gene with fertility and longevity in dairy cattle. Animal Genetics, 37, 304–305.

    Article  CAS  PubMed  Google Scholar 

  • Gurgul, A., Miksza-Cybulska, A., Szmatoła, T., Jasielczuk, I., Piestrzyńska-Kajtoch, A., Fornal, A., Semik-Gurgul, E. and Bugno-Poniewierska, M., 2019. Genotyping-by-sequencing performance in selected livestock species. Genomics, 111(1), 186–195.

  • Gurnani, M., Sethi, R.K. and Nagarcenkar, R., 1986. Development of Karan Fries cattle at NDRI, Karnal. Dairy Information Bulletin No. 111.9. National Dairy Research Institute, Karnal, India: p1–2.

  • Hoglund, J.K., Sahana, G., Brondum, R.F., Guldbrandtsen, B., Buitenhuis, B. and Lund, M.S., 2014. Fine mapping QTL for female fertility on BTA04 and BTA13 in dairy cattle using HD SNP and sequence data. BMC Genomics, 15(1), 790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ibeagha-Awemu, E.M., Peters, S.O., Akwanji, K.A., Imumorin, I.G. and Zhao, X., 2016.High density genome wide genotyping-by-sequencing and association identifies common and low frequency SNPs, and novel candidate genes influencing cow milk traits. Scientific Reports, 6, 31109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilatsia, E.D., Roessler, R., Kahi, A.K., Piepho, H.P. and Zarate, V., 2012. Production objectives and breeding goals of Sahiwal cattle keepers in Kenya and implications for a breeding programme. Tropical Animal Health and Production, 44(3), 519–530.

    Article  PubMed  Google Scholar 

  • Iso-Touru, T., Sahana, G., Guldbrandtsen, B., Lund, M.S. and Vilkki, J., 2016. Genome-wide association analysis of milk yield traits in Nordic Red cattle using imputed whole genome sequence variants. BMC Genetics, 17(1),55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi, B.K., Singh, A. and Gandhi, R.S., 2001. Performance evaluation, conservation and improvement of Sahiwal cattle in India. Animal Genetic Resources, 31, 43–54.

    Article  Google Scholar 

  • Joshi, P., Priyank, V. and Kashyap, S.K., 2018. Genetic diversity study of Rathi and Sahiwal breeds of cattle through microsatellite markers. Veterinary Practitioner, 19(1), 4–6.

  • Kelly, P.A., Bachelot, A., Kedzia, C., Hennighausen, L. and Ormandy, C.J., 2002. The role of prolactin and growth hormone in mammary gland development. Molecular and Cellular Endocrinology, 197, 127–131.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M.S. and Mirza, A., 2014. Factors affecting performance of Sahiwal cattle - A review. The Journal of Animal & Plant Sciences. 24(1), 1–12.

    Google Scholar 

  • Khan, J. R., Bhonsle, D., Jogi, S., Gawande, P. and Preeti, 2007. Effect of milking interval on milk composition in Sahiwal cows. In XVI National Symposium on Animal Resource Development through Physiological, Nuclear genetics and Biotechnological Interventions. Jan 10–12, 2007. Assam Agrc. Univ. Khanpara, Guwahati, India.

  • Kiselak, E.A., Shen, X., Song, J., Gude, D.R., Wang, J., Brody, S.L., Strauss, J.F. and Zhang, Z., 2010. Transcriptional Regulation of an Axonemal Central Apparatus Gene, Sperm – associated Antigen 6, by a SRY-related High Mobility Group Transcription Factor, S-SOX5. Journal of Biological Chemistry, 285, 30496–30505.

    Article  CAS  Google Scholar 

  • Klein, C., Bauersachs, S., Ulbrich, S.E., Einspanier, R., Meyer, H.H., Schmidt, S.E., Reichenbach, H.D., Vermehren, M., Sinowatz, F., Blum, H. and Wolf, E., 2006. Monozygotic twin model reveals novel embryo-induced transcriptome changes of bovine endometrium in the preattachment period. Biology of Reproduction, 74(2), 253–264.

    Article  CAS  PubMed  Google Scholar 

  • Koks, S., Reimann, E., Lilleoja, R., Lattekivi, F., Salumets, A., Reemann, P., Jaakma, U., 2014. Sequencing and annotated analysis of full genome of Holstein breed bull. Mammalian Genome, 25, 363–373.

    Article  PubMed  Google Scholar 

  • Kraus, R.H., Kerstens, H.H., Van Hooft, P., Crooijmans, R.P., Van Der, P.J.J, Elmberg, J., Vignal, A., Huang, Y., Li, N., Prins, H.H. and Groenen, M.A., 2011. Genome wide SNP discovery, analysis and evaluation in mallard (Anas platyrhynchos). BMC Genomics, 12(1), 150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Sharma, R.K., Dar, A.H., Singh, S.K., Kumar, S., Kumar, R.R., Singh, M.K. and Singh, D., 2017. Estimation of Means and Trends in Economic Traits of Sahiwal. Journal of Animal Research, 7(4), 705–709.

    Article  Google Scholar 

  • Kumar, S., Alex, R., Gaur, G.K., Mukherjee, S.S., Mandal, D.K., Singh, U., Tyagi, S., Kumar, A., Das, A.K., Deb, R. and Kumar, M., 2018. Evolution of Frieswal cattle: A crossbred dairy animal of India. Indian Journal of Animal Sciences, 88(3), 265–275.

    Google Scholar 

  • Langmead, B. and Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le, S.Q. and Durbin, R., 2011.SNP detection and genotyping from low-coverage sequencing data on multiple diploid samples. Genome research, 21(6), 952-960.

  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. and Durbin, R., 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liefers, S.C., te Pas, M.F.W., Veerkamp, R.F. and van der Lende, T., 2002. Associations between leptin gene polymorphisms and production, live weight, energy balance, feed intake, and fertility in Holstein heifers. Journal of Dairy Science, 85, 1633–1638.

    Article  CAS  PubMed  Google Scholar 

  • Listrat, A., Hocquette, J.F., Picard, B., Ménissier, F., Djiane, J. and Jammes, H., 2005. Growth hormone receptor gene expression in the skeletal muscle of normal and double-muscled bovines during foetal development. Reproduction Nutrition Development, 45, 393–403.

    Article  CAS  Google Scholar 

  • Litt, M. and Luty, J.A., 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. American Journal of Human Genetics, 44, 397–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malik, A.A., Sharma, R., Ahlawat, S., Deb, R., Negi, M.S. and Tripathi, S.B., 2018. Analysis of genetic relatedness among Indian cattle (Bos indicus) using genotyping by sequencing markers. Animal Genetics, 49(3), 242–245.

    Article  CAS  PubMed  Google Scholar 

  • Mata-Rocha, M., Hernandez-Sanchez, J., Guarneros, G., de la Chesnaye, E., Sanchez-Tusie, A.A., Trevino, C.L., Felix, R. and Oviedo, N., 2014. The transcription factors SOX5 and SOX9 regulate Catsper1 gene expression. FEBS Letters, 588, 3352–3360.

    Article  CAS  PubMed  Google Scholar 

  • Matukumalli, L.K., Lawley, C.T., Schnabel, R.D., Taylor, J.F., Allan, M.F., Heaton, M.P., O’Connell, J., Moore, S.S., Smith, T.P., Sonstegard, T.S. and Van Tassell, C.P., 2009. Development and characterization of a high density SNP genotyping assay for cattle. Plos One, 4(4), e5350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minozzi, G., Nicolazzi, E.L., Stella, A., Biffani, S., Negrini, R., Lazzari, B., Ajmone-Marsan, P. and Williams, J.L., 2013. Genome wide analysis of fertility and production traits in Italian Holstein cattle. Plos One, 8(11), e80219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayeri, S. and Stothard, P., 2016. Tissues, metabolic pathways and genes of key importance in lactating dairy cattle. Springer Science Reviews, 4(2), 49–77.

    Article  Google Scholar 

  • Nayeri, S., Sargolzaei, M., Abo-Ismail, M.K., May, N., Miller, S.P., Schenkel, F., Moore, S.S. and Stothard, P., 2016. Genome-wide association for milk production and female fertility traits in Canadian dairy Holstein cattle. BMC Genetics, 17(1), 75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicolazzi, E.L., Caprera, A., Nazzicari, N., Cozzi, P., Strozzi, F., Lawley, C., Pirani, A., Soans, C., Brew, F., Jorjani, H., Evans, G., Simpson, B., Tosser-Klopp, G., Brauning, R., Williams, J.L. and Stella, A., 2015. SNPchiMp v.3: Integrating and standardizing single nucleotide polymorphism data for livestock species. BMC Genomics, 16, 1–6.

    Article  CAS  Google Scholar 

  • Peterson, B.K., Weber, J.N., Kay, E.H., Fisher, H.S. and Hoekstra, H.E., 2012. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. Plos One, 7, e37135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimentel, E.C.G., Bauersachs, S., Tietze, M., Simianer, H., Tetens, J., Thaller, G., Reinhardt, F., Wolf, E. and König, S., 2011. Exploration of relationships between production and fertility traits in dairy cattle via association studies of SNPs within candidate genes derived by expression profiling. Animal Genetics, 42(3), 251–262.

    Article  CAS  PubMed  Google Scholar 

  • Raven, L.A., Cocks, B.G., Goddard, M.E., Pryce, J.E. and Hayes, B.J., 2014a. Genetic variants in mammary development, prolactin signalling and involution pathways explain considerable variation in bovine milk production and milk composition. Genetics Selection Evolution, 46(1), 29.

    Article  CAS  Google Scholar 

  • Raven, L.A., Cocks, B.G. and Hayes, B.J., 2014b. Multibreed genome wide association can improve precision of mapping causative variants underlying milk production in dairy cattle. BMC Genomics, 15, 62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sambrook, J. and Russell, D., 2001. Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Schmieder, R. and Edwards, R., 2011. Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27(6), 863–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopen, G., Visker, M., Koks, P., Mullaart, E., van Arendonk, J. and Bovenhuis, H., 2011. Whole-genome association study for milk protein composition in dairy cattle. Journal of Dairy Science, 94, 3148–58.

    Article  CAS  PubMed  Google Scholar 

  • Silva, L.F.P., VandeHaar, M.J., Nielsen, M.S.W. and Smith, G.W., 2002. Evidence for a local effect of leptin in bovine mammary gland. Journal of Dairy Science, 85, 3277–3286.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S., Kankoriya, S., Kumar J. S., Jain, H. and Pal S., S., 2014. Genetic diversity analysis of Sahiwal and Tharparker breeds of cattle (Bos indicus) by microsatellite markers. Indian Journal of Animal Research, 48(5), 418–421

    Article  Google Scholar 

  • Stafuzza, N.B., Zerlotini, A., Lobo, F.P., Yamagishi, M.E.B., Chud, T.C.S., Caetano, A.R., Munari, D.P., Garrick, D.J., Machado, M.A., Martins, M.F. and Carvalho, M.R., 2017. Single nucleotide variants and InDels identified from whole-genome re-sequencing of Guzerat, Gyr, Girolando and Holstein cattle breeds. Plos One, 12(3), e0173954.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stothard, P., Choi, J.W., Basu, U., Sumner-Thomson, J.M., Meng, Y., Liao, X. and Moore, S.S., 2011. Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery. BMC Genomics, 12, 1–14.

    Article  CAS  Google Scholar 

  • Surya, T., Vineeth, M.R., Sivalingam, J., Tantia, M.S., Dixit, S.P., Niranjan, S.K. and Gupta, I.D., 2018. Genome-wide identification and annotation of SNPs in Bubalus bubalis. Genomics. In Press.

  • The Bovine HapMap Consortium, 2009. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science, 324, 528–532.

    Article  PubMed Central  CAS  Google Scholar 

  • Vignal, A., Milan, D., SanCristobal, M. and Eggen, A., 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genetics Selection Evolution, 34(3), 1–31.

    Article  Google Scholar 

  • Viitala, S., Szyda, J., Blott, S., Schulman, N., Lidauer, M., Maki-Tanila, A., Georges, M. and Vilkki, J., 2006. The role of the bovine growth hormone receptor and prolactin receptor genes in milk, fat and protein production in Finnish Ayrshire dairy cattle. Genetics, 173, 2151–2164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T. van de, Hornes, M., Friters, A., Pot, J., Paleman, J., Kuiper, M. and Zabeau, M., 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Wurmser, C., Pausch, H., Jung, S., Reinhardt, F., Tetens, J., Thaller, G. and Fries, R., 2012, Identification and dissection of four major QTL affecting milk fat content in the German Holstein-Friesian population. Plos One, 7(7), e40711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, W., Gan, J., Fang, D., Tang, H., Wang, H., Yi, J. and Fu, M., 2018. Genome-wide SNP discovery and evaluation of genetic diversity among six Chinese indigenous cattle breeds in Sichuan. Plos One, 13(8), e0201534.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weikard, R., Goldammer, T., Brunner, R.M. and Kuehn, C., 2012. Tissue-specific mRNA expression patterns reveal a coordinated metabolic response associated with genetic selection for milk production in cows. Physiological Genomics, 44(14), 728–739.

    Article  CAS  PubMed  Google Scholar 

  • Xu, W., Zhang, S., Qiu, W., He, G., Liu, Y., Sun, Y., Ma, Y., Dong, J.and Zhang, W., 2009 Spermatogenesis-related ring finger gene ZNF230 promoter: identification and functional analysis. Molecular Biology Reports, 36, 1187–1193.

    Article  CAS  PubMed  Google Scholar 

  • Yang, F., Chen, F., Li, L., Yan, L., Badri, T., Lv, C., Yu, D., Chen, J., Xing, C., Li, J. and Wang, G., 2018. GWAS using 2b-RAD sequencing identified three mastitis important SNPs via two-stage association analysis in Chinese Holstein cows. bioRxiv, 434340.

  • Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L. and Friedman, J.M., 1994. Positional cloning of the mouse obese gene and its human homologue. Nature, 372, 425–432.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J.L., Zan, L.S., Fang, P., Zhang, F., Shen, G. and Tian, W.Q., 2008, Genetic variation of PRLR gene and association with milk performance traits in dairy cattle. Canadian Journal of Animal Science, 88, 33–39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayakumar Sivalingam.

Ethics declarations

The experimental plan was approved by NDRI and NBAGR Institutional Animal Ethics Committee (IAEC) constituted as per the article number 13 of the CPCSEA rules laid down by the Government of India. Norms concerning the ethical treatment of animals during the study were strictly followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Table 1

(DOCX 13.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vineeth, M.R., Surya, T., Sivalingam, J. et al. Genome-wide discovery of SNPs in candidate genes related to production and fertility traits in Sahiwal cattle. Trop Anim Health Prod 52, 1707–1715 (2020). https://doi.org/10.1007/s11250-019-02180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-019-02180-x

Keywords

Navigation