Skip to main content

Advertisement

Log in

Camelids: new players in the international animal production context

  • Reviews
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

A Correction to this article was published on 06 July 2020

This article has been updated

Abstract

The Camelidae family comprises the Bactrian camel (Camelus bactrianus), the dromedary camel (Camelus dromedarius), and four species of South American camelids: llama (Lama glama), alpaca (Lama pacos) guanaco (Lama guanicoe), and vicuña (Vicugna vicugna). The main characteristic of these species is their ability to cope with either hard climatic conditions like those found in arid regions (Bactrian and dromedary camels) or high-altitude landscapes like those found in South America (South American camelids). Because of such interesting physiological and adaptive traits, the interest for these animals as livestock species has increased considerably over the last years. In general, the main animal products obtained from these animals are meat, milk, and hair fiber, although they are also used for races and work among other activities. In the near future, climate change will likely decrease agricultural areas for animal production worldwide, particularly in the tropics and subtropics where competition with crops for human consumption is a major problem already. In such conditions, extensive animal production could be limited in some extent to semi-arid rangelands, subjected to periodical draughts and erratic patterns of rainfall, severely affecting conventional livestock production, namely cattle and sheep. In the tropics and subtropics, camelids may become an important protein source for humans. This article aims to review some of the recent literature about the meat, milk, and hair fiber production in the six existing camelid species highlighting their benefits and drawbacks, overall contributing to the development of camelid production in the framework of food security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  • Accolas, J.P., Deffontaines, J.P., and Aubin, F., 1978. Le lait et les produits laitiers en République Populaire de Mongolie, Le lait, 575-576, 278–286

    Google Scholar 

  • Agrawal, R.P. et al., 2005. Camel milk as an adjunct to insulin therapy improves long-term glycemic control and reduction in doses of insulin in patients with type-1 diabetes A 1 year randomized controlled trial, Diabetes Research and Clinical Practice, 68, 176–177

    CAS  PubMed  Google Scholar 

  • Ahmad, R.S., Imran, A., and Hussain, M.B., 2018. Nutritional Composition of Meat. In: M.S. Arshad (ed), Meat Science and Nutrition, 2018, (IntechOpen, Pakistan), 61–77

    Google Scholar 

  • Ahmadpour, A. et al., 2014. Comparison of the quality and chemical composition of camel meat and beef, Proceedings of the 6th Iranian Animal Science Congress Tabriz, Iran, 2014.

  • Al haj, O.A., and Al Kanhal, H.A., 2010. Compositional, technological and nutritional aspects of dromedary camel milk, International Dairy Journal, 20, 811–821

    CAS  Google Scholar 

  • Alhidary, I.A., Alsofi, M.A., Abdoun, K.A., Samara, E.M., Okab, A.B., and Al-Haidary, A.A., 2018. Influence of dietary chromium yeast supplementation on apparent trace elements metabolism in growing camel (Camelus dromedarius) reared under hot summer conditions, Tropical Animal Health and Production, 50, 519–524

    PubMed  Google Scholar 

  • Al-Owaimer, A.N., 2000. Effect of dietary Halophyte Salicornia bigelovii Torr on carcass characteristics, minerals, fatty acids and amino acids profile of camel meat, Journal of Applied Animal Research, 18, 185–192

    Google Scholar 

  • Anello, M., Daverio, M.S., Silbestro, M.B., Vidal-Rioja, L., and Di Rocco, F., 2019. Characterization and expression analysis of KIT and MITF-M genes in llamas and their relation to white coat color, Animal Genetics, 50, 143–149

    CAS  PubMed  Google Scholar 

  • Ayadi, M., Musaad, A., Aljumaah, R.S., Matar, A., Konuspayeva, G., Abdelrahman, M.M., Abid, I., Bengoumi, M., and Faye, B., 2018. Machine milking parameters for an efficient and healthy milking in dairy camels (Camelus dromedarius), Journal of Camel Practice and Research, 25, 81–87

    Google Scholar 

  • Baimukanov, D., Akimebekov, A., Omarov, M., Ishan, K., Aubakirov, K., and Tlepov, A., 2017. Productive and biological features of Camelus bactrianus-Camelus dromedarius in conditions of Kazakhstan, Anais da Academia Brasileira de Ciencias, 89, 2058–2073

    Google Scholar 

  • Burger, P.A., Ciani, E., and Faye, B., 2019. Old World camels in a modern world - a balancing act between conservation and genetic improvement, Animal Genetics, IN PRESS. https://doi.org/10.1111/age.12858

  • Chad, E.K., DePeters, E.J., Puschner, B., Taylor, S.J., and Robison, J., 2014. Preliminary investigation of the composition of alpaca (Vicugna pacos) milk in California, Small Ruminant Research, 117, 165–168

    Google Scholar 

  • Chapman, M.J., 1991. Camels, Biologist, 38, 41–44

    Google Scholar 

  • Chizzolini, R., Zanardi, E., Dorigoni, V., and Ghidini, S., 1999. Calorific value and cholesterol content of normal and low-fat meat and meat products, Trends in Food Science Technology, 10, 119–128

    CAS  Google Scholar 

  • Cobos, A., and Díaz, O., 2015. Chemical Composition of Meat and Meat Products. In: P.C.K. Cheung (ed), Handbook of Food Chemistry, 2015, (Springer Berlin Heidelberg Berlin, Heidelberg), 1–32

    Google Scholar 

  • Cristofanelli, S., Antonini, M., Torres, D., Polidori, P., and Renieri, C., 2004. Meat and carcass quality from Peruvian llama (Lama glama) and alpaca (Lama pacos), Meat Science, 66, 589–593

    CAS  PubMed  Google Scholar 

  • Dawood, A.A., and Alkanhal, M.A., 1995. Nutrient composition of Najdi-camel meat, Meat Science, 39, 71–78

    CAS  PubMed  Google Scholar 

  • Dehority, B.A., 2002. Gastrointestinal tracts of herbivores, particularly the ruminant: Anatomy, physiology and microbial digestion of plants, Journal of Applied Animal Research, 21, 145–160

    Google Scholar 

  • Ehlayel, M., Bener, A., Abu Hazeima, K., and Al-Mesaifri, F., 2011. Camel milk is a safer choice than goat milk for feeding children with cow milk allergy, ISRN Allergy, 2011, 391641

    PubMed  PubMed Central  Google Scholar 

  • El-Magoli, S.B., Awad, A.A., and El-Wakeil, F.A., 1973. Intramuscular lipid chemistry of beef and camel Longissimus dorsi muscle, Egyptian Journal of Food Science, 1, 75–84

    CAS  Google Scholar 

  • FAOstat 2019. http://www.fao.org/faostat/en/#home

  • Faraz, A., Mustafa, M.I., Lateef, M., Yaqoob, M., and Muhammad, Y., 2013. Production potential of camel and its prospects in Pakistan, Punjab University Journal of Zoology, 28, 89–95

    Google Scholar 

  • Faraz, A., Waheed, A., Mirza, R.H., and Ishaq, H.M., 2019. The camel-a short communication on classification and attributes, Journal of Fisheries and Livestock Production 7, 289

    Google Scholar 

  • Faye, B., 2015. Role, distribution and perspective of camel breeding in the third millennium economies, Emirates Journal of Food and Agriculture, 27, 318–327

    Google Scholar 

  • Faye, B., and Konuspayeva, G., 2012. The sustainability challenge to the dairy sector - The growing importance of non-cattle milk production worldwide, International Dairy Journal, 24, 50–56

    Google Scholar 

  • Faye, B., Konuspayeva, G., Messad, S., and Loiseau, G., 2008. Discriminant milk components of Bactrian camel (Camelus bactrianus), dromedary (Camelus dromedarius) and hybrids, Dairy Science and Technology, 88, 607–617

    CAS  Google Scholar 

  • Fernández-Baca, S., 2005. Situación actual de los camélidos sudamericanos en Perú, Regional TCP project TCP/RLA/2914 “Support to the breeding and utilization of South American Camelids in the Andean Region”. In: F. University Cayetano Heredia and CONACS of Perú (ed. FAO, Rome, Italy)

  • Franco, C.D., Romero, S., Ferrari, A., Schnittger, L., and Florin-Christensen, M., 2018. Detection of Sarcocystis aucheniae in blood of llama using a duplex semi-nested PCR assay and its association with cyst infestation, Heliyon, 4, e00928

    Google Scholar 

  • Frank, E.N., Hick, M.V.H., Gauna, C.D., Lamas, H.E., Renieri, C., and Antonini, M., 2006. Phenotypic and genetic description of fibre traits in South American domestic camelids (llamas and alpacas), Small Ruminant Research, 61, 113–129

    Google Scholar 

  • Gerken, M., 2010. Relationships between integumental characteristics and thermoregulation in South American camelids, Animal, 4, 1451–1459

    CAS  PubMed  Google Scholar 

  • Hernández-Castellano, L.E., Morales-delaNuez, A., Moreno-Indias, I., Torres, A., Sánchez-Macías, D., Capote, J., Castro, N., and Argüello, A., 2013. Carcass and meat quality determination as a tool to promote local meat consumption in outermost regions of Europe, Journal of Applied Animal Research, 41, 269–276

    Google Scholar 

  • Hernández-Castellano, L.E., Almeida, A.M., Renaut, J., Arguello, A., and Castro, N., 2016. A proteomics study of colostrum and milk from the two major small ruminant dairy breeds from the Canary Islands: a bovine milk comparison perspective, Journal of Dairy Research, 83, 366–374

    Google Scholar 

  • Hernández-Castellano, L.E., Nally, J.E., Lindahl, J., Wanapat, M., Alhidary, I.A., Fangueiro, D., Grace, D., Ratto, M., Bambou, J.C., and de Almeida, A.M., 2019. Dairy science and health in the tropics: challenges and opportunities for the next decades, Tropical Animal Health and Production, 51, 1009–1017

    PubMed  Google Scholar 

  • Hoter, A., Rizk, S., and Naim, H.Y., 2019. Cellular and Molecular Adaptation of Arabian Camel to Heat Stress, Frontiers in Genetics, 10, 588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imamura, K., Salmurzauli, R., Iklasov, M.K., Baibayssov, A., Matsui, K., and Nurtazin, S.T., 2017. The distribution of the two domestic camel species in Kazakhstan caused by the demand of industrial stockbreeding, Journal of Arid Land Studies, 26, 233–236

    Google Scholar 

  • Indra, P., Maratch, A., and Batsoor, L., 2003. Mongol camel, (Mongolian State Univ. Agric. Publ.)

  • Jiménez, P., Evelyn, C., Martín Espada, C., and Cid Vázquez, M.D., 2010. South American Camelids: Classification, Origin and Characteristics Revista Complutense de Ciencias Veterinarias, 4, 23–36

    Google Scholar 

  • Kadim, I.T., Mahgoub, O., Al-Kindi, A., Al-Marzooqi, W., and Al-Saqri, N.M., 2006. Effects of transportation at high ambient temperatures on physiological responses, carcass and meat quality characteristics of three breeds of Omani goats, Meat Science, 73, 626–634

    CAS  PubMed  Google Scholar 

  • Kadim, I.T., Mahgoub, O., and Purchas, R.W., 2008. A review of the growth, and of the carcass and meat quality characteristics of the one-humped camel (Camelus dromedaries), Meat Science, 80, 555–569

    CAS  PubMed  Google Scholar 

  • Kadim, I.T., Al-Karousi, A., Mahgoub, O., Al-Marzooqi, W., Khalaf, S.K., Al-Maqbali, R.S., Al-Sinani, S.S.H., and Raiymbek, G., 2013. Chemical composition, quality and histochemical characteristics of individual dromedary camel (Camelus dromedarius) muscles, Meat Science, 93, 564–571

    CAS  PubMed  Google Scholar 

  • Kadim, I.T., Mahgoub, O., and Mbaga, M., 2014. Potential of camel meat as a non-traditional high quality source of protein for human consumption, Animal Frontiers, 4, 13–17

    Google Scholar 

  • Khalesi, M., Salami, M., Moslehishad, M., Winterburn, J., and Moosavi-Movahedi, A.A., 2017. Biomolecular content of camel milk: A traditional superfood towards future healthcare industry, Trends in Food Science and Technology, 62, 49–58

    CAS  Google Scholar 

  • Konuspayeva, G., and Faye, B., 2011. Identité, vertus thérapeutiques et allégation santé : les produits fermentés d’Asie Centrale. In: C.C.d.l.d. Monde (ed), Les cahiers de l’OCHA 2011, Paris, France), 135-145

  • Konuspayeva, G., Lemarie, E., Faye, B., Loiseau, G., and Montet, D., 2008. Fatty acid and cholesterol composition of camel's (Camelus bactrianus, Camelus dromedarius and hybrids) milk in Kazakhstan, Dairy Science and Technology, 88, 327–340

    CAS  Google Scholar 

  • Konuspayeva, G., Faye, B., and Loiseau, G., 2009. The composition of camel milk: A meta-analysis of the literature data, Journal of Food and Composition Analysis, 22, 95–101

    CAS  Google Scholar 

  • Kumar, Y.K., Rakesh, K., Lakshmi, P., and Jitendra, S., 2015. Composition and medicinal properties of camel milk: a review, Asian Journal of Dairy and Food Research, 34, 83–93

    Google Scholar 

  • Kumar, D., Chatli, M.K., Singh, R., Mehta, N., and Kumar, P., 2016. Antioxidant and antimicrobial activity of camel milk casein hydrolysates and its fractions, Small Ruminant Research, 139, 20–25

    Google Scholar 

  • Larico-Medina, H., Fernández-Ruelas, E., Rodrigo-Vargas, Y., Machaca-Ticona, P., Roque-Huanca, B., Sumari-Machaca, R., Chui-Betancur, H., and Olarte-Daza, C., 2018. Queso de leche de alpaca: una nueva alternativa, Revista de Investigaciones Veterinarias del Perú, 29, 848–857

    Google Scholar 

  • Lichtenstein, G., and Vila, B., 2003. Vicuna use by Andean communities: An overview, Mountain Research and Development, 23, 197–201

    Google Scholar 

  • Mamani-Linares, L.W., and Gallo, C.B., 2014. Meat quality, proximate composition and muscle fatty acid profile of young llamas (Lama glama) supplemented with hay or concentrate during the dry season, Meat Science, 96, 394–399

    CAS  PubMed  Google Scholar 

  • Manee, M.M., Alshehri, M.A., Binghadir, S.A., Aldhafer, S.H., Alswailem, R.M., Algarni, A.T., AL-Shomrani, B.M., and AL-Fageeh, M.B., 2019. Comparative analysis of camelid mitochondrial genomes, Journal of Genetics, 98, 88

    PubMed  Google Scholar 

  • Markiewicz-Keszycka, M., Czyżak-Runowska, G., Lipińska, P., and Wójtowski, J., 2013. Fatty acid profile of milk - A review, Bulletin- Veterinary Institute in Pulawy, 57, 135

    CAS  Google Scholar 

  • Mati, V.L.T., Bicalho, R.S., and Melo, A.L., 2017. Exploring possibilities for an alternative approach in experimental schistosomiasis mansoni: the peritoneal cavity of mice, Acta Parasitologica, 62, 178–187

    PubMed  Google Scholar 

  • McGregor, B.A., and Butler, K.L., 2004. Sources of variation in fibre diameter attributes of Australian alpacas and implications for fleece evaluation and animal selection, Australian Journal of Agricultural Research, 55, 433–442

    Google Scholar 

  • Medina, M.A., Van Nieuwenhove, G.A., Pizarro, P.L., and Van Nieuwenhove, C.P., 2019. Comparison of the nutritional value and fatty acid composition of milk from four South American camelid species, Canadian Journal of Zoology, 97, 203–209

    CAS  Google Scholar 

  • Moussaiev, Z., Torekhanov, A., and Seidalyev, B., 2007. Camel farming [in Kazakh], Bastaou Pub, Almaty (Kazakhstan), 126 p. (ISBN 9965-413-72-X)

    Google Scholar 

  • Musaad, A.M., Faye, B., and Al-Mutairi, S.E., 2013. Seasonal and physiological variation of gross composition of camel milk in Saudi Arabia, Emirates Journal of Food and Agriculture, 25, 618–624

    Google Scholar 

  • Nagy, P., and Juhasz, J., 2016. Review of present knowledge on machine milking and intensive milk production in dromedary camels and future challenges, Tropical Animal Health and Production, 48, 915–926

    PubMed  Google Scholar 

  • Narmuratova, M., Konuspayeva, G., Loiseau, G., Serikbaeva, A., Barouh, N., Montet, D., and Faye, B., 2006. Fatty acids composition of dromedary and bactrian camel milk in Kazakhstan, Journal of Camel Practice and Research, 88, 327–340

    Google Scholar 

  • Pauciullo, A., and Erhardt, G., 2015. Molecular Characterization of the Llamas (Lama glama) Casein Cluster Genes Transcripts (CSN1S1, CSN2, CSN1S2, CSN3) and Regulatory Regions, Plos One, 10, e0124963

    PubMed  PubMed Central  Google Scholar 

  • Payne, W.J.A., and Wilson, R.T., 1999. An introduction to animal husbandry in the tropics, (Blackwell Science, Oxford Oxfordshire; Malden, MA)

  • Perez, P., Maino, M., Guzman, R., Vaquero, A., Kobrich, C., and Pokniak, J., 2000. Carcass characteristics of llamas (Lama glama) reared in Central Chile, Small Ruminant Research, 37, 93–97

    CAS  PubMed  Google Scholar 

  • Polidori, P., Renieri, C., Antonini, M., Passamonti, P., and Pucciarelli, F., 2007. Meat fatty acid composition of llama (Lama glama) reared in the Andean highlands, Meat Science, 75, 356–358

    CAS  PubMed  Google Scholar 

  • Raiymbek, G., Kadim, I., Konuspayeva, G., Mahgoub, O., Serikbayeva, A., and Faye, B., 2015. Discriminant amino-acid components of Bactrian (Camelus bactrianus) and Dromedary (Camelus dromedarius) meat, Journal of Food and Composition Analysis, 41, 194–200

    CAS  Google Scholar 

  • Raiymbek, G., Kadim, I., Al-Amri Issa, S., Alkindi Abdulaziz, Y., Faye, B., Khalf, S.K., Kenenbay, S.I., and Purchas, R.W., 2018. Concentrations of nutrients in six muscles of Bactrian Camelus bactrianus camels, Journal of Camel Practice and Research, 25, 109–121

    Google Scholar 

  • Raiymbek, G., Faye, B., Kadim, I.T., Serikbaeva, A., and Konuspayeva, G., 2019. Comparative fatty acids composition and cholesterol content in Bactrian (Camelus bactrianus) and dromedary camel (Camelus dromedarius) meat, Tropical Animal Health and Production, 51, 2025–2035

    CAS  PubMed  Google Scholar 

  • Rawdah, T.N., Elfaer, M.Z., and Koreish, S.A., 1994. Fatty-Acid Composition of the Meat and Fat of the One-Humped Camel (Camelus-Dromedarius), Meat Science, 37, 149–155

    CAS  PubMed  Google Scholar 

  • Riek, A., and Gerken, M., 2006. Changes in Llama (Lama glama) milk composition during lactation, Journal of Dairy Science, 89, 3484–3493

    CAS  PubMed  Google Scholar 

  • Rona, R.J., Keil, T., Summers, C., Gislason, D., Zuidmeer, L., Sodergren, E., Sigurdardottir, S.T., Lindner, T., Goldhahn, K., Dahlstrom, J., McBride, D., and Madsen, C., 2007. The prevalence of food allergy: A meta-analysis, Journal of Allergy and Clinical Immunology, 120, 638–646

    Google Scholar 

  • Saeed, M.A., Rashid, M.H., Vaughan, J., and Jabbar, A., 2018. Sarcocystosis in South American camelids: The state of play revisited, Parasites and Vectors, 11, 146

    PubMed  Google Scholar 

  • Saipolda, T., 2004. Mongolian camels. In: R. Cardellino, A. Rosati and C. Mosconi (eds), Current Status of Genetic Resources, Recording and Production Systems in African, Asian and American Camelids,, 2004, Sousse, Tunisia,), 73–79

  • Salva, B.K., Zumalacarregui, J.M., Figueira, A.C., Osorio, M.T., and Mateo, J., 2009. Nutrient composition and technological quality of meat from alpacas reared in Peru, Meat Science, 82, 450–455

    CAS  PubMed  Google Scholar 

  • Schönfeldt, H., and Gibson, N., 2008. Changes in the nutrient quality of meat in an obesity context, Meat science, 80, 20–27

    PubMed  Google Scholar 

  • Sharma, A., and Pant, S., 2013. Studies on camel hair-merino wool blended knitted fabrics, Indian Journal of Fibre and Textile Research, 38, 317–319

    CAS  Google Scholar 

  • Singh, R., 2001. Annual Report of National Research Centre on Camel. 2001, (National Research Centre on Camel:, Rajasthan, India.),

  • Smith, M.A., Bush, R.D., Thomson, P.C., and Hopkins, D.L., 2015. Carcass traits and saleable meat yield of alpacas (Vicugna pacos) in Australia, Meat Science, 107, 1–11

    CAS  PubMed  Google Scholar 

  • Smith, M.A., Bush, R.D., van de Ven, R.J., and Hopkins, D.L., 2016. Effect of electrical stimulation and ageing period on alpaca (Vicugna pacos) meat and eating quality, Meat Science, 111, 38–46

    CAS  PubMed  Google Scholar 

  • Smith, M.A., Nelson, C.L., Biffin, T.E., Bush, R.D., Hall, E.J.S., and Hopkins, D.L., 2019. Vitamin E concentration in alpaca meat and its impact on oxidative traits during retail display, Meat Science, 151, 18–23

    CAS  PubMed  Google Scholar 

  • Stahl, T., Sallmann, H.-P., Duehlmeier, R., and Wernery, U., 2006. Selected vitamins and fatty acid patterns in dromedary milk and colostrum, Journal of Camel Practice and Research, 13, 53–57

    Google Scholar 

  • Surong, H., 2019. Introduction to the Bactrian camel population. 2019, (Inner Mongolia Agricultural University, Alashan, China),

    Google Scholar 

  • Terentyev, S.M., 1975. Meat productivity. In: S.M. Terentyev (ed), Camel rearing, 1975, (Kolos Publ., Moscow, Russia), 105-124

  • Vargas-Bello-Perez, E., and Larrain, R.E., 2017. Impacts of fat from ruminants' meat on cardiovascular health and possible strategies to alter its lipid composition, Journal of the Science of Food and Agriculture, 97, 1969–1978

    CAS  PubMed  Google Scholar 

  • Vargas-Bello-Perez, E., Marquez-Hernandez, R.I., and Hernandez-Castellano, L.E., 2019. Bioactive peptides from milk: animal determinants and their implications in human health, Journal of Dairy Research, 86, 136–144

    CAS  Google Scholar 

  • Vaughan, J.L., and Tibary, A., 2006. Reproduction in female South American camelids: A review and clinical observations, Small Ruminant Research, 61, 259–281

    Google Scholar 

  • Wernery, U., 2006. Camel milk, the white gold of the desert, Journal of Camel Practice and Research, 13, 15–26

    Google Scholar 

  • Wernery, U., Juhasz, J., and Nagy, P., 2004. Milk yield performance of dromedaries with an automatic bucket milking machine, Journal of Camel Practice and Research, 11, 51–57

    Google Scholar 

  • Wernery, U., Joseph, S., Tarello, W., and Theneyan, M., 2006. Serological response of houbara bustards to an H5N1 vaccine, The Veterinary Record, 158, 840

    CAS  PubMed  Google Scholar 

  • Wheeler, J.C., 1995. Evolution and Present Situation of the South-American Camelidae, Biological Journal of the Linnean Society, 54, 271–295

    Google Scholar 

  • Wood, J.D., Richardson, R.I., Nute, G.R., Fisher, A.V., Campo, M.M., Kasapidou, E., Sheard, P.R., and Enser, M., 2004. Effects of fatty acids on meat quality: a review, Meat science, 66, 21–32

    CAS  PubMed  Google Scholar 

  • Wu, H.G., Guang, X.M., Al-Fageeh, M.B., Cao, J.W., Pan, S.K., Zhou, H.M., Zhang, L., Abutarboush, M.H., Xing, Y.P., Xie, Z.Y., Alshanqeeti, A.S., Zhang, Y.R., Yao, Q.L., Al-Shomrani, B.M., Zhang, D., Li, J., Manee, M.M., Yang, Z.L., Yang, L.F., Liu, Y.Y., Zhang, J.L., Altammami, M.A., Wang, S.Y., Yu, L.L., Zhang, W.B., Liu, S.Y., Ba, L., Liu, C.X., Yang, X.K., Meng, F.H., Wang, S.W., Li, L., Li, E.L., Li, X.Q., Wu, K.F., Zhang, S., Wang, J.Y., Yin, Y., Yang, H.M., Al-Swailem, A.M., and Wang, J., 2014. Camelid genomes reveal evolution and adaptation to desert environments, Nature Communications, 5,

  • Wuliji, Davis, Dodds, Turner, Andrews, and Bruce, 2000. Production performance, repeatability and heritability estimates for live weight, fleece weight and fiber characteristics of alpacas in New Zealand, Small Ruminant Research, 37, 189–201

    CAS  PubMed  Google Scholar 

  • Yagil, Y., and Yagil, C., 2000. The lack of a modulating effect of non-genetic factors (age, gonads and maternal environment) on the phenotypic expression of the salt-susceptibility genes in the Sabra rat model of hypertension, Journal of Hypertension, 18, 1393–1399

    CAS  PubMed  Google Scholar 

  • Yam, B.A.Z., and Khomeiri, M., 2015. Introduction to Camel origin, history, raising, characteristics, and wool, hair and skin: A Review, Research Journal of Agriculture and Environmental Management, 4, 496–508

    Google Scholar 

  • Zhang, H., Yao, J., Zhao, D., Liu, H., Li, J., and Guo, M., 2005. Changes in chemical composition of Alxa bactrian camel milk during lactation, Journal of Dairy Science, 88, 3402–3410

    CAS  PubMed  Google Scholar 

  • Zhao J., Liu M. and Zhang H., 2004. Segmentation of longissimus dorsi and marbling in ribeye imaging based on mathematical morphology, Transactions of the Chinese Society of Agricultural Engineering, 20, 144–146

    Google Scholar 

  • Ziauddin, K.S., Mahendrakar, N.S., Rao, D.N., Ramesh, B.S., and Amla, B.L., 1994. Observations on Some Chemical and Physical Characteristics of Buffalo Meat, Meat Science, 37, 103–113

    CAS  Google Scholar 

  • Zibaee, S., Hosseini, S.M.A.-R., Yousefi, M., Taghipour, A., Kiani, M.A., and Noras, M.R., 2015. Nutritional and Therapeutic Characteristics of Camel Milk in Children: A Systematic Review, Electronic Physician, 7, 1523–1528

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Mariana Castro (Instituto Superior de Agronomia, Lisbon University, Portugal) for the graphical work in Fig. 1, as well as Antonio Morales-delaNuez (Consejo Superior de Investigaciones Científicas, Spain) for kindly providing pictures in Figs. 4b1, 4b2, 5a1, and 5a2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo E. Hernández-Castellano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarrin, M., Riveros, J.L., Ahmadpour, A. et al. Camelids: new players in the international animal production context. Trop Anim Health Prod 52, 903–913 (2020). https://doi.org/10.1007/s11250-019-02197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-019-02197-2

Keywords

Navigation