Skip to main content
Log in

Pollinating animals in the urban environment

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Urban environments contain habitats for flowering plants and their pollinating animal species. It is, however, unclear how the urban matrix influences plant-pollinator processes. We recorded plant diversity, floral abundance, flower visitor diversity and plot visits at 89 plant patches within the city of Zürich. The urban matrix surrounding each site was analyzed for the landscape metrics edge density and the extent of green area up to 200 m radius. The correlation between edge density and bee diversity and visitation frequency varied over the entire spatial range, while the correlation for syrphid diversity and visitation frequency levelled off at 80 m radius. In contrast, the correlations with green area were more consistent, with bee diversity levelling off after 100 m, while syrphid diversity and visits continued to increase. The variation in the correlation of bee visits was partly accounted for by the large contribution of honeybees. Plant diversity significantly affected bee diversity and visits, and syrphid visits. Floral abundance had a positive effect on bee visits and bee diversity. Syrphid diversity had a negative interaction with floral abundance and green area. The extent of green area increased bee diversity and visits, and syrphid visits, while edge density reduced visitation by bees. This study showed that plant diversity and floral abundance in urban environments promote pollinating flower visitors. The extent of green area and edge density are important urban mosaic attributes that affect pollinator abundance and visitation frequency at multiple scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahrné K, Bengtsson J, Elmqvist T (2009) Bumble bee (Bombus spp.) along a gradient of increasing urbanization. PLoS Biol 4(5):e5574

    Google Scholar 

  • Amiet F (1996) Hymenoptera. Apidae, 1. Teil, volume 12 of Insecta Helvetica. Schweizerische Entomologische Gesellschaft

  • Angold PG, Sadler JP, Hill MO, Pullin A, Rushton S, Austin K, Small E, Wood B, Wadsworth R, Sanderson R, Thompson K (2006) Biodiversity in urban habitat patches. Sci Total Environ 360(1–3):196–204

    PubMed  CAS  Google Scholar 

  • Bankowska R (1980) Fly communities of the family Syrphidae in natural and anthropogenic habitats of Poland. Mem Zoologi 33:3–93

    Google Scholar 

  • Bässler M, Jäger E, Werner K (1996) ROTHMALER Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband, volume 2. Gustav Fischer, 16 edition

  • Bhattacharya M, Primack RB, Gerwein J (2003) Are roads and railroads barriers to bumblebee movement in a temperate suburban conservation area? Biol Conserv 109(1):37–45

    Article  Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M, Ohlemuller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313(5785):351–354

    Article  PubMed  CAS  Google Scholar 

  • Bivand, R, with contributions by Anselin L, Asunçao RA, Berke O, Bernat A, Carvalho M, Chun Y, Christensen B, Dormann C, Dray S, Halbersma R, Krainski E, Lewin-Koh N, Li H, Ma J, Millo G, Mueller W, Ono H, Peres-Neto P, Reder M, Tiefelsdorf M, Yu D (2009) spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.4–52

  • Bjornstad ON (2009) ncf: spatial nonparametric covariance functions. R package version 1.1–3

  • Brenneisen S (2006) Space for urban wildlife: designing green roofs as habitats in Switzerland. Urban Habitats 4(1):27–36

    Google Scholar 

  • Brown KS, Freitas AVL (2002) Butterfly communities of urban forest fragments in Campinas, São Paulo, Brazil: Structure, instability, environmental correlates, and conservation. J Insect Conserv 6(4):217–231

    Article  Google Scholar 

  • Buchmann SL, Nabhan GP (1996) The forgotten pollinators. Island Press

  • Cane JH, Minckley RL, Kervin LJ, Roulston TH, Williams NM (2006) Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Ecol Appl 16(2):632–644

    Article  PubMed  Google Scholar 

  • Cohen JE (2003) Human population: the next half century. Science 302(5648):1172–1175

    Article  PubMed  CAS  Google Scholar 

  • Crane P, Kinzig A (2005) Nature in the metropolis. Science 308(5726):1225–1225

    Article  PubMed  CAS  Google Scholar 

  • Darvill B, Knight ME, Goulson D (2004) Use of genetic markers to quantify bumblebee foraging range and nest density. Oikos 107(3):471–478

    Article  Google Scholar 

  • Dearborn DC, Kark S (2010) Motivations for conserving urban biodiversity. Conserv Biol 24(2):432–440

    Article  PubMed  Google Scholar 

  • Di Gulio M, Nobis M (2008) Landschaftszerschneidung und Biodiversität: Barrieren oder Ausbreitungswege? Forum für Wissen, pp. 23–30

  • Donaldson J, Nanni I, Zachariades C, Kemper J, Thompson JD (2002) Effects of habitat fragmentation on pollinator diversity and plant reproductive success in renosterveld shrublands of South Africa. Conserv Biol 16(5):1267–1276

    Article  Google Scholar 

  • Dormann CF, McPherson JM, Araujo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kuehn I, Ohlemueller R, Peres-Neto PR, Reineking B, Schroeder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Article  Google Scholar 

  • Dover J, Settele J (2009) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13(1):3–27

    Article  Google Scholar 

  • Ebeling A, Klein AM, Schumacher J, Weisser WW, Tscharntke T (2008) How does plant richness affect pollinator richness and temporal stability of flower visits? Oikos 117(12):1808–1815

    Article  Google Scholar 

  • Environmental Systems Research Institute (ESRI) Inc. (2006) ArcGIS

  • Faraway J (2009) Faraway: functions and datasets for books by Julian Faraway. R package version 1.0.4

  • Fetridge ED, Ascher JS, Langellotto GA (2008) The bee fauna of residential gardens in a Suburb of New York City (Hymenoptera: Apoidea). Ann Entomol Soc Am 101(6):1067–1077

    Article  Google Scholar 

  • Frankie GW, Thorp R, Hernandez J, Rizzardi M, Ertter, Pawelek JC, Witt SL, Schindler M, Coville R, Wojcik V (2009) Native bees are a rich natural resource in urban California gardens. Calif Agr 63(3):113–120

    Article  Google Scholar 

  • Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 71(5):757–764

    Article  Google Scholar 

  • Gatter W, Schmid U (1990) Die Wanderungen der Schwebfliegen (Diptera, Syrphidae) am Randecker Maar. Spixiana 15:9–100

    Google Scholar 

  • Ghazoul J (2006) Floral diversity and the facilitation of pollination. J Ecol 94:295–304

    Article  Google Scholar 

  • Ghazoul J, Willmer PG (1994) Endothermic warm-up in two species of sphecid wasp and its relation to behaviour. Physiol Entomol 19:103–108

    Article  Google Scholar 

  • Giannakouris K (2008) Population and social conditions. Technical Report 72, EUROSTAT. European Comission

  • Gilbert F, Gonzalez A, Evans-Freke I (1998) Corridors maintain species richness in the fragmented landscapes of a microecosystem. P Roy Soc Lond B Bio 265(1396):577–582

    Article  Google Scholar 

  • Godefroid S, Koedam N (2007) Urban plant species patterns are highly driven by density and function of built-up areas. Landscape Ecol 22(8):1227–1239

    Article  Google Scholar 

  • Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Syst 34:1–26

    Article  Google Scholar 

  • Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153(3):589–596

    Article  PubMed  Google Scholar 

  • Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DPC (2008) The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Frontiers Ecol Environ 6(5):264–272

    Article  Google Scholar 

  • Haenke S, Scheid B, Schaefer M, Tscharntke T, Thies C (2009) Increasing syrphid fly diversity and density in sown flower strips within simple vs. complex landscapes. J Appl Ecol 46(5):1106–1114

    Article  Google Scholar 

  • Hanski I, Peltonen A (1988) Island colonization and peninsulas. Oikos 51(1):105–106

    Article  Google Scholar 

  • Hardt RA, Forman RTT (1989) Boundary form effects on woody colonization of reclaimed surface mines. Ecology 70(5):1252–1260

    Article  Google Scholar 

  • Hegland SJ, Boeke L (2006) Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecol Entomol 31(5):532–538

    Article  Google Scholar 

  • Heinrich B (1975) Energetics of pollination. Annu Rev Ecol Syst 6:139–170

    Article  Google Scholar 

  • Hopwood JL (2008) The contribution of roadside grassland restorations to native bee conservation. Biol Conserv 141(10):2632–2640

    Article  Google Scholar 

  • Hothorn T, Hornik K (2006) exactRankTests: exact distributions for rank and permutation tests. R package version 0.8–18

  • Ims RA (1995) Movement patterns related to spatial structures. In: Hannsson L, Fahrig L, Merriam G (eds) Mosaic Landscappes and Ecological Processes, volume 2 of IALE Studies in Landscape Ecology, chapter 4, pages 85–109. Chapman & Hall

  • Kadas G (2006) Rare invertebrates colonizing green roofs in London. Urban Habitats 4(1):66–86

    Google Scholar 

  • Kearns CA, Oliveras DM (2009) Environmental factors affecting bee diversity in urban and remote grassland plots in Boulder, Colorado. J Insect Conserv 13(6):655–665

    Article  Google Scholar 

  • Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annu Rev Entomol 28:407–453

    Article  Google Scholar 

  • Lopez-Uribe MM, Oi CA, Del Lama MA (2008) Nectar-foraging behavior of Euglossine bees (Hymenoptera: Apidae) in urban areas. Apidologie 39(4):410–418

    Article  Google Scholar 

  • Lundholm JT, Marlin A (2006) Habitat origins and microhabitat preferences of urban plant species. Urban Ecosyst 9:139–159

    Article  Google Scholar 

  • MacLeod A (1999) Attraction and retention of Episyrphus balteatus DeGeer (Diptera: Syrphidae) at an arable field margin with rich and poor floral resources. Agr Ecosyst Environ 73(3):237–244

    Article  Google Scholar 

  • McFrederick QS, LeBuhn G (2006) Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)? Biol Conserv 129(3):372–382

    Article  Google Scholar 

  • Meyer B, Jauker F, Steffan-Dewenter I (2009) Contrasting resource-dependent responses of hoverfly richness and density to landscape structure. Basic Appl Ecol 10(2):178–186

    Article  Google Scholar 

  • Morgan KR, Heinrich B (1987) Temperature regulation in bee- and wasp-mimicking syrphid flies. J Exp Biol 133:59–71

    Google Scholar 

  • Niemelä J (1999) Ecology and urban planning. Biodivers Conserv 8(1):119–131

    Article  Google Scholar 

  • Oberndorfer E, Lundholm J, Bass B, Coffman RR, Doshi H, Dunnett N, Gaffin S, Kohler M, Liu KKY, Rowe B (2007) Green roofs as urban ecosystems: Ecological structures, functions, and services. Bioscience 57(10):823–833

    Article  Google Scholar 

  • Oksanen, J, Kindt, R, Legendre, P, O’Hara, B, Simpson, GL, Solymos, P, Stevens, MHH, Wagner, H (2009) vegan: Community Ecology Package. R package version 1.15–4

  • Oosterbroek P (2006) The European Families of the Diptera. KNNV Publishing

  • Osborne JL, Martin AP, Carreck NL, Swain JL, Knight ME, Goulson D, Hale RJ, Sanderson RA (2008a) Bumblebee flight distances in relation to the forage landscape. J Anim Ecol 77(2):406–415

    Article  PubMed  Google Scholar 

  • Osborne JL, Martin AP, Shortall CR, Todd AD, Goulson D, Knight ME, Hale RJ, Sanderson RA (2008b) Quantifying and comparing bumblebee nest densities in gardens and countryside habitats. J Appl Ecol 45(3):784–792

    Article  Google Scholar 

  • Potts SG, Vulliamy B, Roberts S, O’Toole C, Dafni A, Ne’eman G, Willmer PG (2004) Nectar resource diversity organises flower-visitor community structure. Entomol Exp Appl 113(2):103–107

    Article  Google Scholar 

  • Rebele F (1994) Urban ecology and special features of urban ecosystems. Global Ecol Biogeogr 4(6):173–187

    Article  Google Scholar 

  • Saure C (1996) Urban habitats for bees: the example of the city of Berlin. In: Matheson A, Buchmann SL, O‘Toole C, Westrich P, Williams IH (eds.) The Conservation of Bees, number 18 in Linnean Society Symposium, chapter 4, pp. 47–53. Academic Press

  • Schwarz N (2010) Urban form revisited–Selecting indicators for characterising European cities. Landscape Urban Plan 96(1):29–47

    Article  Google Scholar 

  • Sheater SJ (2009) A modern approach to regression with R. Springer

  • Sih A, Baltus MS (1987) Patch size, pollinator behavior, and pollinator limitation in Catnip. Ecology 68(6):1679–1690

    Article  Google Scholar 

  • Smith RM, Warren PH, Thompson K, Gaston KJ (2006) Urban domestic gardens (VI): environmental correlates of invertebrate species richness. Biodivers Conserv 15(8):2415–2438

    Article  Google Scholar 

  • Sommaggio D (1999) Syrphidae: can they be used as environmental bioindicators? Agr Ecosyst Environ 74(1–3):343–356

    Article  Google Scholar 

  • Ssymank A, Kearn CA, Pape T, Thompson FC (2008) Pollinating Flies (Diptera): A major contribution to plant diversity and agricultural production. Biodiversity 9(1–2):86–89

    Article  Google Scholar 

  • Statistisches Amt Zürich (2008) Medienmitteilung des Statistischen Amtes. Rekordhohes Bevölkerungswachstum im Kanton Zürich. Technical report, Kanton Zürich

  • Steffan-Dewenter I, Kuhn A (2003) Honeybee foraging in differentially structured landscapes. P Roy Soc Lond B Bio 270(1515):569–575

    Article  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (2002) Insect communities and biotic interactions on fragmented calcareous grasslands—a mini review. Biol Conserv 104(3):275–284

    Article  Google Scholar 

  • Stuke J (1998) Die Bedeutung einer städtischen Grünanlage für die Schwebfliegenfauna (Diptera: Syrphidae) dargestellt am Beispiel des Bremer “Stadtwaldes”. Abhandlungen Naturwissenschaftlicher Verein zu Bremen 44(1):93–114

    Google Scholar 

  • Tewksbury JJ, Levey DJ, Haddad NM, Sargent S, Orrock JL, Weldon A, Danielson BJ, Brinkerhoff J, Damschen EI, Townsend P (2002) Corridors affect plants, animals, and their interactions in fragmented landscapes. P Natl Acad Sci USA 99(20):12923–12926

    Article  CAS  Google Scholar 

  • Townsend PA, Levey DJ (2005) An experimental test of whether habitat corridors affect pollen transfer. Ecology 86(2):466–475

    Article  Google Scholar 

  • United Nations (2008) World urbanization prospects: The 2007 revision population database. Technical report, United Nations

  • Vamosi JC, Knight TM, Steets JA, Mazer SJ, Burd M, Ashman TL (2006) Pollination decays in biodiversity hotspots. P Natl Acad Sci USA 103(4):956–961

    Article  CAS  Google Scholar 

  • Van Geert A, Van Rossum F, Triest L (2010) Do linear landscape elements in farmland act as biological corridors for pollen dispersal? J Ecol 98(1):178–187

    Article  Google Scholar 

  • Van Rossum F, Triest L (2010) Pollen dispersal in an insect-pollinated wet meadow herb along an urban river. Landscape Urban Plan 95(4):201–208

    Article  Google Scholar 

  • van Veen, MD (2004) Hoverflies of Northwest Europe. KNNV Publishing

  • Willmer PG, Stone GN (2004) Behavioral, ecological, and physiological determinants of the activity patterns of bees. Adv Stud Behav 34:347–466

    Article  Google Scholar 

  • Wratten SD, Bowie MH, Hickman JM, Evans AM, Sedcole JR, Tylianakis JM (2003) Field boundaries as barriers to movement of hover flies (Diptera: Syrphidae) in cultivated land. Oecologia 134(4):605–611

    PubMed  Google Scholar 

  • Zurbuchen A, Landert L, Klaiber J, Mueller A, Hein S, Dorn S (2010) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Conserv 143(3):669–676

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer

Download references

Acknowledgements

We would like to thank Dr. Chris Kettle for his help on the manuscript, and the journal editor and two reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest Ireneusz Hennig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Online Resource 1

(DOC 182 kb)

ESM Online Resource 2

(DOC 62.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennig, E.I., Ghazoul, J. Pollinating animals in the urban environment. Urban Ecosyst 15, 149–166 (2012). https://doi.org/10.1007/s11252-011-0202-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-011-0202-7

Keywords

Navigation