Skip to main content

Advertisement

Log in

The potential for mycorrhizae to improve green roof function

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

The selection of plant species for use on green roofs has been based primarily on their ability to cope with the harsh climatic conditions of the urban rooftop environment. However, green roof plants must also survive in engineered substrates that often lack organic material and beneficial soil microorganisms such as mycorrhizal fungi. We review the literature on mycorrhizae in the context of green roof ecosystems, identifying aspects of green roof functioning that could be enhanced through the integration of mycorrhizal fungi. Although relatively few studies have addressed the influence of mycorrhizal symbiosis on green roof plants specifically, we include information from a variety of naturally occurring habitats with analogous growing conditions. The available literature suggests that the incorporation of mycorrhizal fungi can improve a number of green roof functional attributes, including plant diversity, drought resilience, leachate quality, nutrient use efficiency and carbon sequestration, all while reducing the need for external nutrient inputs. We present evidence that mycorrhizal fungi are of general benefit to green roof ecosystems, and can be effectively integrated into green roof design. We recommend methods for this integration and propose future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agueda B, Parladé J, de Miguel AM, Martínez-Peña F (2006) Characterization and identification of field ectomycorrhizae of Boletus edulis and Cistus ladanifer. Mycologia 98:23–30

    Article  PubMed  Google Scholar 

  • Aitkenhead-Peterson JA, Dvorak BD, Volder A, Stanley NC (2011) Chemistry of growth medium and leachate from green roof systems in south-Central Texas. Urban Ecosyst 14:17–33

    Article  Google Scholar 

  • Akhmetzhanova AA, Soudzilovskaia NA, Onipchenko VG, Cornwell WK, Agafonov VA, Selivanov IA, Cornelissen JH (2012) A rediscovered treasure: mycorrhizal intensity database for 3000 vascular plant species across the former soviet union: ecological archives e093-059. Ecology 93:689–690

    Article  Google Scholar 

  • Allen MF (1982) Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis (HBK) lag ex Steud. New Phytol 91:191–196

    Article  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge

    Google Scholar 

  • Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297

    Article  Google Scholar 

  • Allen MF (2009) Water relations in the mycorrhizosphere. In: Ulrich Lüttge U, Beyschlag W, Büdel B, Francis D (eds) Progress in botany, 1st edn. Springer, Berlin, pp. 257–276

    Chapter  Google Scholar 

  • Allen MF, Crisafulli C, Friese CF, Jeakins SL (1992) Re-formation of mycorrhizal symbioses on mount St Helens, 1980–1990: interactions of rodents and mycorrhizal fungi. Mycol Res 96:447–453

    Article  Google Scholar 

  • Allen MF, Swenson W, Querejeta JI, Egerton-Warburton LM, Treseder KK (2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annu Rev Phytopathol 41:271–303

    Article  CAS  PubMed  Google Scholar 

  • Alsup S, Ebbs SD, Battaglia LL, Retzlaff WA (2011) Heavy metals in leachate from simulated green roof systems. Ecol Eng 37:1709–1717

  • Alsup S, Ebbs S, Retzlaff W (2010) The exchangeability and leachability of metals from select green roof growth substrates. Urban Ecosyst 13:91–111

    Article  Google Scholar 

  • Ampim PA, Sloan JJ, Cabrera RI, Harp DA, Jaber FH (2010) Green roof growing substrates: types, ingredients, composition and properties. J Environ Hortic 28:244

    Google Scholar 

  • Asghari HR, Chittleborough DJ, Smith FA, Smith SE (2005) Influence of arbuscular mycorrhizal (AM) symbiosis on phosphorus leaching through soil cores. Plant Soil 275:181–193

    Article  CAS  Google Scholar 

  • Aspiras RB, Allen ON, Harris RF, Chesters G (1971) The role of microorganisms in the stabilization of soil aggregates. Soil Biol Biochem 3:347–353

    Article  CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

    Article  Google Scholar 

  • Augé RM, Moore JL, Sylvia DM, Cho K (2004) Mycorrhizal promotion of host stomatal conductance in relation to irradiance and temperature. Mycorrhiza 14:85–92

    Article  PubMed  Google Scholar 

  • Augé RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24

    Article  PubMed  Google Scholar 

  • Bago B, Azcon-Aguilar C, Piché Y (1998) Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus glomus intraradices grown under monoxenic conditions. Mycologia 90:52–62

    Article  Google Scholar 

  • Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballesta MC, Carvajal M, Ruiz-Lozano JM (2012) Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot 109:1009–1017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bates AJ, Sadler JP, Greswell RB, Mackay R (2015) Effects of varying organic matter content on the development of green roof vegetation: a six year experiment. Ecol Eng 82:301–310

    Article  Google Scholar 

  • Bearden BN (2001) Influence of arbuscular mycorrhizal fungi on soil structure and soil water characteristics of vertisols. Plant Soil 229:245–258

    Article  CAS  Google Scholar 

  • Bearden BN, Petersen L (2000) Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant Soil 218:173–183

    Article  CAS  Google Scholar 

  • Beattie D, Berghage R (2004) Green roof media characteristics: the basics. In: Proceedings of the 2nd Greening rooftops for sustainable communities, Portland, USA

  • Bécard G, Pfeffer PE (1993) Status of nuclear division in arbuscular mycorrhizal fungi during in vitro development. Protoplasma 174:62–68

    Article  Google Scholar 

  • Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496

    Article  CAS  Google Scholar 

  • Berndtsson JC (2010) Green roof performance towards management of runoff water quantity and quality: a review. Ecol Eng 36:351–360

    Article  Google Scholar 

  • Berndtsson JC, Emilsson T, Bengtsson L (2006) The influence of extensive vegetated roofs on runoff water quality. Sci Total Environ 355:48–63

    Article  CAS  PubMed  Google Scholar 

  • Berndtsson JC, Bengtsson L, Jinno K (2009) Runoff water quality from intensive and extensive vegetated roofs. Ecol Eng 35:369–380

    Article  Google Scholar 

  • Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13–21

    Article  PubMed  Google Scholar 

  • Birhane E, Sterck FJ, Fetene M, Bongers F, Kuyper TW (2012) Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169:895–904

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonfante P, Genre A, Faccio A, et al. (2000) The Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells. Mol Plant-Microbe Interact 13:1109–1120

    Article  CAS  PubMed  Google Scholar 

  • Bousselot JM, Klett JE, Koski RD (2011) Moisture content of extensive green roof substrate and growth response of 15 temperate plant species during dry down. Hortscience 46:518–522

    Google Scholar 

  • Bronick C, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Buffam APDI, Mitchell ME (2015) Nutrient cycling in green roof ecosystems. In: Sutton R (ed) Green roof ecosystems, 1st edn. Springer International Publishing, New York, pp. 107–137

    Chapter  Google Scholar 

  • Burri K, Gromke C, Graf F (2011) Mycorrhizal fungi protect the soil from wind erosion: a wind tunnel study. Land Degrad Dev 24:385–392

    Article  Google Scholar 

  • Busch E, Lelley JI (1997) Use of endomycorrhizal fungi for plant cultivation on buildings. Angew Bot 71:50–53

    Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  • Chenu C, Stotzky G (2001) Interactions between microorganisms and soil particles: an overview. In: Huang PM, Bollag JM, Senesi N (eds) Interactions between microorganisms and soil particles: impact on the terrestrial ecosystem, 1st edn. Wiley, New York, pp. 3–40

    Google Scholar 

  • Clark MJ, Zheng Y (2012) Evaluating fertilizer influence on overwintering survival and growth of Sedum species in a fall-installed green roof. Hortscience 47:1775–1781

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Daynes CN, Field DJ, Saleeba JA, Cole MA, McGee PA (2012) Development and stabilisation of soil structure via interactions between organic matter, arbuscular mycorrhizal fungi and plant roots. Soil Biol Biochem 57:683–694

  • Degens B, Sparling G, Abbott L (1996) Increasing the length of hyphae in a sandy soil increases the amount of water-stable aggregates. Appl Soil Ecol 3:149–159

    Article  Google Scholar 

  • Del Barrio EP (1998) Analysis of the green roofs cooling potential in buildings. Energy and Buildings 27:179–193

    Article  Google Scholar 

  • Doubková P, Vlasáková E, Sudová R (2013) Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil 370:149–161

    Article  CAS  Google Scholar 

  • Drew E, Murray R, Smith S, Jakobsen I (2003) Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes. Plant Soil 251:105–114

    Article  CAS  Google Scholar 

  • Driver JD, Holben WE, Rillig MC (2005) Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol Biochem 37:101–106

    Article  CAS  Google Scholar 

  • Duan X, Neuman DS, Reiber JM, Green CD, Saxton AM, Augé RM (1996) Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J Exp Bot 47:1541–1550

    Article  CAS  Google Scholar 

  • Egerton-Warburton L, Graham R, Hubbert K (2003) Spatial variability in mycorrhizal hyphae and nutrient and water availability in a soil-weathered bedrock profile. Plant Soil 249:331–342

    Article  CAS  Google Scholar 

  • Emilsson T, Rolf K (2005) Comparison of establishment methods for extensive green roofs in southern Sweden. Urban For Urban Green 3:103–111

    Article  Google Scholar 

  • Emilsson T, Berndtsson JC, Mattsson JE, Rolf K (2007) Effect of using conventional and controlled release fertiliser on nutrient runoff from various vegetated roof systems. Ecol Eng 29:260–271

    Article  Google Scholar 

  • Emran M, Gispert M, Pardini G (2012) Patterns of soil organic carbon, glomalin and structural stability in abandoned Mediterranean terraced lands. Eur J Soil Sci 63:637–649

    Article  CAS  Google Scholar 

  • Faber BA, Zasoski RJ, Munns DN, Shackel K (1991) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69:87–94

    Article  Google Scholar 

  • Facelli E, Smith SE, Facelli JM, Christophersen HM, Andrew Smith F (2010) Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytol 185:1050–1061

    Article  PubMed  Google Scholar 

  • Farrell C, Ang XQ, Rayner JP (2013a) Water-retention additives increase plant available water in green roof substrates. Ecol Eng 52:112–118

    Article  Google Scholar 

  • Farrell C, Mitchell RE, Szota C, Rayner JP, Williams NSG (2012) Green roofs for hot and dry climates: interacting effects of plant water use, succulence and substrate. Ecol Eng 49:270–276

    Article  Google Scholar 

  • Farrell C, Szota C, Williams NS, Arndt SK (2013b) High water users can be drought tolerant: using physiological traits for green roof plant selection. Plant Soil 372:177–193

    Article  CAS  Google Scholar 

  • Feng G, Song YC, Li XL, Christie P (2003) Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. Appl Soil Ecol 22:139–148

    Article  Google Scholar 

  • Fitter AH (1991) Costs and benefits of mycorrhizas: implications for functioning under natural conditions. Experientia 47:350–355

    Article  Google Scholar 

  • Friedrich CR (2005) Principles for selecting the proper components for a green roof growing media. In: Proceedings of the 3rd Intl. Green Roof Conf., Washington, USA

  • Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418

    Article  Google Scholar 

  • Gadkar V, Rillig MC (2006) The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiol Lett 263:93–101

    Article  CAS  PubMed  Google Scholar 

  • Gashaw Deressa T, Schenk MK (2008) Contribution of roots and hyphae to phosphorus uptake of mycorrhizal onion (Allium cepa L.) - a mechanistic modeling approach. J Plant Nutr Soil Sci 171:810–820

    Article  CAS  Google Scholar 

  • Getter KL, Rowe DB (2006) The role of extensive green roofs in sustainable development. Hortscience 41:1276–1285

    Google Scholar 

  • Getter KL, Rowe DB, Robertson GP, Cregg BM, Andresen JA (2009) Carbon sequestration potential of extensive green roofs. Environmental science & technology 43:7564–7570

    Article  CAS  Google Scholar 

  • Gobat JM, Aragno M, Matthey W (2004) The living soil: fundamentals of soil science and soil biology. Science Publishers, Enfield

    Google Scholar 

  • Goicoechea N, Antolin M, Sánchez-Díaz M (1997) Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant 100:989–997

    Article  CAS  Google Scholar 

  • Goicoechea N, Merino S, Sánchez-Díaz M (2004) Contribution of arbuscular mycorrhizal fungi (AMF) to the adaptations exhibited by the deciduous shrub Anthyllis cytisoides L. Under water deficit. Physiol Plant 122:453–464

    Article  CAS  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, et al. (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  CAS  PubMed  Google Scholar 

  • Graceson A, Hare M, Hall N, Monaghan J (2014) Use of inorganic substrates and composted green waste in growing media for green roofs. Biosyst Eng 124:1–7

    Article  Google Scholar 

  • Green CD, Stodola A, Augé RM (1998) Transpiration of detached leaves from mycorrhizal and nonmycorrhizal cowpea and rose plants given varying abscisic acid, pH, calcium, and phosphorus. Mycorrhiza 8:93–99

    Article  CAS  Google Scholar 

  • Gregoire BG, Clausen JC (2011) Effect of a modular extensive green roof on stormwater runoff and water quality. Ecol Eng 37:963–969

    Article  Google Scholar 

  • Hallett PD, Feeney DS, Bengough AG, Rillig MC, Scrimgeour CM, Young IM (2009) Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant Soil 314:183–196

    Article  CAS  Google Scholar 

  • Hathaway A, Hunt WF, Jennings G (2008) A field study of green roof hydrologic and water quality performance. Trans ASABE 51:37–43

    Article  CAS  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10:175–183

    Article  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci 107:13754–13759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  CAS  PubMed  Google Scholar 

  • Hubbert K, Beyers J, Graham R (2001) Roles of weathered bedrock and soil in seasonal water relations of Pinus jeffreyi and Arctostaphylos patula. Can J For Res 31:1947–1957

    Article  Google Scholar 

  • Janoušková M, Rydlová J, Püschel D, Száková J, Vosátka M (2011) Extraradical mycelium of arbuscular mycorrhizal fungi radiating from large plants depresses the growth of nearby seedlings in a nutrient deficient substrate. Mycorrhiza 21:641–650

    Article  PubMed  Google Scholar 

  • Jastrow J, Miller R, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30:905–916

    Article  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1992) Hyphal transport of 15 N-labelled nitrogen by a vesicular—arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol 122:281–288

    Article  CAS  Google Scholar 

  • John J, Lundholm J, Kernaghan G (2014) Colonization of green roof plants by mycorrhizal and root endophytic fungi. Ecol Eng 71:651–659

    Article  Google Scholar 

  • Johnson D (2008) Resolving uncertainty in the carbon economy of mycorrhizal fungi. New Phytol 180:3–5

    Article  PubMed  Google Scholar 

  • Kerley SJ, Read DJ (1995) The biology of mycorrhiza in the Ericaceae. XVIII. Chitin degradation by Hymenoscyphus ericae and transfer of chitin-nitrogen to the host plant. New Phytol 131:369–375

    Article  CAS  Google Scholar 

  • Kernaghan G (2013) Functional diversity and resource partitioning in fungi associated with the fine feeder roots of forest trees. Symbiosis 61:113–123

    Article  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol Lett 3:137–141

    Article  Google Scholar 

  • Köhler M, Schmidt M, Grimme FW, Laar M, de Assunção Paiva VL, Tavares S (2002) Green roofs in temperate climates and in the hot-humid tropics–far beyond the aesthetics. Environ Manag Health 13:382–391

    Article  Google Scholar 

  • Koide RT, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145–163

    Article  PubMed  Google Scholar 

  • Kotsiris G, Nektarios PA, Ntoulas N, Kargas G (2013) An adaptive approach to intensive green roofs in the Mediterranean climatic region. Urban For Urban Green 12:380–392

    Article  Google Scholar 

  • Kovacic DA, St John TV, Dyer MI (1984) Lack of Vesicular-Arbuscular mycorrhizal inoculum in a ponderosa pine forest. Ecology 65:1755–1759

    Article  Google Scholar 

  • Larcher W (1996) Physiological plant ecology. Acta Physiol Plant 18:183–184

    Google Scholar 

  • Leake JR, Read DJ (1990) Chitin as a nitrogen source for mycorrhizal fungi. Mycol Res 94:993–995

    Article  CAS  Google Scholar 

  • Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207

    Article  CAS  PubMed  Google Scholar 

  • Lundholm JT (2015) Green roof plant species diversity improves ecosystem multifunctionality. J Appl Ecol 52:726–734

    Article  CAS  Google Scholar 

  • Lundholm JT, MacIvor JS, MacDougall Z, Ranalli M (2010) Plant species and functional group combinations affect green roof ecosystem functions. PLoS One 5:e9677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lützow MV, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions–a review. Eur J Soil Sci 57:426–445

    Article  CAS  Google Scholar 

  • MacIvor JS, Margolis L, Puncher CL, Matthews BJC (2013) Decoupling factors affecting plant diversity and cover on extensive green roofs. J Environ Manag 130:297–305

    Article  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Article  CAS  Google Scholar 

  • Marulanda A, Azcon R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119:526–533

    Article  CAS  Google Scholar 

  • McGee PA, Baczocha N (1994) Sporocarpic Endogonales and Glomales in the scats of Rattus and Perameles. Mycol Res 98:246–249

    Article  Google Scholar 

  • McGuire KL, Payne SG, Palmer MI, et al. (2013) Digging the New York City skyline: soil fungal communities in green roofs and city parks. PLoS One 8:e58020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire KL, Payne SG, Orazi G, Palmer MI (2015) Bacteria and fungi in green roof ecosystems. In: Sutton R (ed) Green Roof Ecosystems, 1st edn. Springer International Publishing, pp 175–191

  • McIlveen WD, Cole H Jr (1976) Spore dispersal of Endogonaceae by worms, ants, wasps, and birds. Can J Bot 54:1486–1489

    Article  Google Scholar 

  • Miller R, Jastrow J (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579–584

    Article  Google Scholar 

  • Miller R, Jastrow J, Reinhardt D (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23

    Article  Google Scholar 

  • Molineux CJ, Connop SP, Gange AC (2014) Manipulating soil microbial communities in extensive green roof substrates. Sci Total Environ 493:632–638

    Article  CAS  PubMed  Google Scholar 

  • Molineux CJ, Gange AC, Connop SP, Newport DJ (2015) Are microbial communities in green roof substrates comparable to those in post-industrial sites? - a preliminary study. Urban Ecosyst 18:1245–126

  • Monterusso MA, Rowe DB, Rugh CL (2005) Establishment and persistence of Sedum spp. and native taxa for green roof applications. HortScience 40:391–396

  • Monterusso MA, Rowe DB, Rugh CL, Russell DK (2002) Runoff water quantity and quality from green roof systems. Acta Hortic 639:369–376

    Google Scholar 

  • Moran AC, Hunt WF, Smith JT (2005) In: Moglen GE (ed) Green roof hydrologic and water quality performance from two field sites in North Carolina. Managing Watersheds for Human and Natural Impacts: Engineering, Ecological, and Economic Challenges. Williamsurg, USA, July 2005. American Society of Civil Engineers, Williamsburg, pp. 1–12

    Google Scholar 

  • Nagase A, Dunnett N (2011) The relationship between percentage of organic matter in substrate and plant growth in extensive green roofs. Landsc Urban Plan 103:230–236

    Article  Google Scholar 

  • Neumann E, George E (2010) Nutrient uptake: the arbuscular mycorrhiza fungal symbiosis as a plant nutrient acquisition strategy. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function, 2nd edn. Springer, Amsterdam, pp. 136–167

    Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000

    Article  Google Scholar 

  • Nobel PS, Cui M (1992) Hydraulic conductances of the soil, the root-soil air gap, and the root: changes for desert succulents in drying soil. J Exp Bot 43:319–326

    Article  Google Scholar 

  • O’Dea M (2007) Fungal mitigation of soil erosion following burning in a semi-arid Arizona Savanna. Geoderma 138:79–85

    Article  Google Scholar 

  • Oberndorfer E, Lundholm JT, Bass B, et al. (2007) Green roofs as urban ecosystems: ecological structures, functions, and services. Bioscience 57:823–833

    Article  Google Scholar 

  • Olsson PA, Tyler G (2004) Occurrence of non-mycorrhizal plant species in south Swedish rocky habitats is related to exchangeable soil phosphate. J Ecol 92:808–815

    Article  Google Scholar 

  • Olsson PA, Wilhelmsson P (2000) The growth of external AM fungal mycelium in sand dunes and in experimental systems. Plant Soil 226:161–169

    Article  CAS  Google Scholar 

  • Ouldboukhitine SE, Spolek G, Belarbi R (2014) Impact of plants transpiration, grey and clean water irrigation on the thermal resistance of green roofs. Ecol Eng 67:60–66

    Article  Google Scholar 

  • Passioura JB (1988) Water transport in and to roots. Annu Rev Plant Physiol Plant Mol Biol 39:245–265

    Article  Google Scholar 

  • Paul MJ, Meyer JL (2008) Streams in the urban landscape. Urban Ecol 32:207–231

    Article  Google Scholar 

  • Pearson J, Jakobsen I (1993) The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytol 124:489–494

    Article  CAS  Google Scholar 

  • Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology: Cabi., UK

  • Ponder F Jr (1980) Rabbits and grasshoppers: vectors of endomycorrhizal fungi on new coal mine spoil. Research Note, Forest Service, United States Department of Agriculture NC-250

  • Purin S, Rillig MC (2008) Immuno-cytolocalization of glomalin in the mycelium of the arbuscular mycorrhizal fungus glomus intraradices. Soil Biol Biochem 40:1000–1003

    Article  CAS  Google Scholar 

  • Raimondo F, Trifilò P, Gullo MAL, Andri S, Savi T, Nardini A (2015) Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations. AoB plants 7: plv007

  • Rayner JP, Farrell C, Raynor KJ, Murphy SM, Williams NS (2016) Plant establishment on a green roof under extreme hot and dry conditions: the importance of leaf succulence in plant selection. Urban For Urban Green 15:6–14

    Article  Google Scholar 

  • Retzlaff W, Ebbs S, Alsup S, Morgan S, Woods E, Jost V, Luckett K (2008) What is that running off my green roof? Proceedings of the Greening rooftops for sustainable communities. Baltimore, MD, In

    Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Steinberg PD (2002) Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification? Soil Biol Biochem 34:1371–1374

    Article  CAS  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–177

    Article  CAS  Google Scholar 

  • Ruiz-Lozano J, Azcón R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478

    Article  CAS  Google Scholar 

  • Rumble H, Gange AC (2013) Soil microarthropod community dynamics in extensive green roofs. Ecol Eng 57:197–204

    Article  Google Scholar 

  • Ruth B, Khalvati M, Schmidhalter U (2011) Quantification of mycorrhizal water uptake via high-resolution on-line water content sensors. Plant Soil 342:459–468

    Article  CAS  Google Scholar 

  • Schrader S, Böning M (2006) Soil formation on green roofs and its contribution to urban biodiversity with emphasis on collembolans. Pedobiologia 50:347–356

    Article  Google Scholar 

  • Schroeder M, Janos D (2005) Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density. Mycorrhiza 15:203–216

    Article  CAS  PubMed  Google Scholar 

  • Sikes BA, Cottenie K, Klironomos J (2009) Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J Ecol 97:1274–1280

    Article  Google Scholar 

  • Singh PK (2012) Role of glomalin related soil protein produced by arbuscular mycorrhizal fungi: a review. Agric Sci Res J 2:119–125

    Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic press, Cambridge

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13

    Article  PubMed  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staddon PL, Ostle N, Dawson LA, Fitter AH (2003) The speed of soil carbon throughput in an upland grassland is increased by liming. J Exp Bot 54:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Starry O, Lea-Cox JD, Kim J, van Iersel MW (2014) Photosynthesis and water use by two Sedum species in green roof substrate. Environ Exp Bot 107:105–112

    Article  CAS  Google Scholar 

  • Steinberg PD, Rillig MC (2003) Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biol Biochem 35:191–194

    Article  CAS  Google Scholar 

  • Stovin V (2010) The potential of green roofs to manage urban stormwater. Water Environ J 24:192–199

    Article  Google Scholar 

  • Sutton RK (2008) Media modifications for native plant assemblages on extensive green roofs. Cities Alive Conference, Baltimore, MD, In: Proceedings of Greening Rooftops for Sustainable Communities, Baltimore, Maryland

  • Teemusk A, Mander Ü (2007) Rainwater runoff quantity and quality performance from a greenroof: the effects of short-term events. Ecol Eng 30:271–277

    Article  Google Scholar 

  • Tinker P, Nye P (2000) Solute movement in the rhizosphere. Oxford University Press, New York

    Google Scholar 

  • Tisdall J (1991) Fungal hyphae and structural stability of soil. Soil Research 29:729–743

    Article  Google Scholar 

  • Tisdall J, Oades J (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Tisdall J, Smith S, Rengasamy P (1997) Aggregation of soil by fungal hyphae. Aust J Soil Res 35:54–60

    Article  Google Scholar 

  • van der Heijden MG (2010) Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology 91:1163–1171

    Article  PubMed  Google Scholar 

  • van Mechelen C, Thierry D, Martin H (2014) Mediterranean open habitat vegetation offers great potential for extensive green roof design. Landscape Urban Plan 121:81–91

    Article  Google Scholar 

  • Vaz Monteiro MM, Blanusa T, Verhoef A, Hadley P, Cameron R (2015) Relative importance of transpiration rate and leaf morphological traits for the regulation of leaf temperature. Aust J Bot 64:32–44

    Article  CAS  Google Scholar 

  • Veresoglou SD, Chen B, Rillig MC (2012) Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem 46:53–62

    Article  CAS  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Whiteside MD, Digman MA, Gratton E, Treseder KK (2012) Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biol Biochem 55:7–13

    Article  CAS  Google Scholar 

  • Whittinghill LJ, Rowe DB, Schutzki R, Cregg BM (2014) Quantifying carbon sequestration of various green roof and ornamental landscape systems. Landscape Urban Plan 123:41–48

    Article  Google Scholar 

  • Williams NS, Rayner JP, Raynor KJ (2010) Green roofs for a wide brown land: opportunities and barriers for rooftop greening in Australia. Urban For Urban Green 9:245–251

    Article  Google Scholar 

  • Wilson GW, Hartnett DC (1998) Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot 85:1732–1738

    Article  CAS  PubMed  Google Scholar 

  • Wilson GWT, Hartnett DC, Rice CW (2006) Mycorrhizal-mediated phosphorus transfer between tallgrass prairie plants Sorghastrum nutans and Artemisia ludoviciana. Funct Ecol 20:427–435

    Article  Google Scholar 

  • Wilson GW, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    Article  PubMed  Google Scholar 

  • Wright S, Anderson R (2000) Aggregate stability and glomalin in alternative crop rotations for the central Great Plains. Biol Fertil Soils 31:249–253

    Article  CAS  Google Scholar 

  • Wright S, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

  • Wright S, Starr J, Paltineanu I (1999) Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci Soc Am J 63:1825–1829

    Article  CAS  Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  CAS  PubMed  Google Scholar 

  • Young T, Cameron DD, Sorrill J, Edwards T, Phoenix G (2014) Importance of different components of green roof substrate on plant growth and physiological performance. Urban For Urban Green 13:507–516

    Article  Google Scholar 

  • Young T, Cameron DD, Phoenix GK (2015) Using AMF inoculum to improve the nutritional status of Prunella vulgaris plants in green roof substrate during establishment. Urban For Urban Green 14:959–967

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin Kernaghan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, J., Kernaghan, G. & Lundholm, J. The potential for mycorrhizae to improve green roof function. Urban Ecosyst 20, 113–127 (2017). https://doi.org/10.1007/s11252-016-0573-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-016-0573-x

Keywords

Navigation