Skip to main content

Advertisement

Log in

The biological properties of E6 and E7 oncoproteins from human papillomaviruses

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

More than 100 different human papillomavirus (HPV) types have been isolated so far, and they can be sub-grouped in cutaneous or mucosal according to their ability to infect the skin or the mucosa of the genital or upper-respiratory tracts. A sub-group of human mucosal HPVs, referred to as high-risk HPV types, is responsible for approximately 5% of all human cancers, which represents one-third of all the tumours induced by viruses. Epidemiological and biological studies have shown that HPV16 is the most oncogenic type within the high-risk group. Emerging lines of evidence suggest that, in addition to the high-risk mucosal HPV types, certain cutaneous HPVs are involved in skin cancer. HPV-associated cancers are intimately linked to HPV persistence and the accumulation of chromosomal rearrangements. The products of the early genes, E6 and E7, of the high-risk mucosal HPV types play a key role in both events. Indeed, these proteins have developed a number of strategies to evade host immuno-surveillance allowing viral persistence, and to alter cell cycle and apoptosis control, facilitating the accumulation of DNA damage/mutations. Often, the two oncoproteins target the same cellular pathways with different mechanisms, showing a strong synergism in promoting cellular transformation and neutralizing the immune response. Here, we review most of the findings on the biological properties and molecular mechanisms of the oncoproteins E6 and E7 from mucosal and cutaneous HPV types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.M. de Villiers, C. Fauquet, T.R. Broker, H.U. Bernard, H. zur Hausen, Classification of papillomaviruses. Virology 324, 17 (2004)

    Article  PubMed  CAS  Google Scholar 

  2. H. zur Hausen, Papillomaviruses and cancer: from basic studies to clinical application. Nat. Rev. Cancer 2, 342 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Z. Chen, M. Schiffman, R. Herrero, R. Desalle, R.D. Burk, Human papillomavirus (HPV) types 101 and 103 isolated from cervicovaginal cells lack an E6 open reading frame (ORF) and are related to gamma-papillomaviruses. Virology 360, 447 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. R.J. Nobre, E. Herraez-Hernandez, J.W. Fei, L. Langbein, S. Kaden, H.J. Grone, E.M. de Villiers, E7 oncoprotein of novel human papillomavirus type 108 lacking the E6 gene induces dysplasia in organotypic keratinocyte cultures. J. Virol. 83, 2907 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. N. Munoz, F.X. Bosch, S. de Sanjose, R. Herrero, X. Castellsague, K.V. Shah, P.J. Snijders, C.J. Meijer, Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 348, 518 (2003)

    Article  PubMed  Google Scholar 

  6. J.S. Smith, L. Lindsay, B. Hoots, J. Keys, S. Franceschi, R. Winer, G.M. Clifford, Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int. J. Cancer 121, 621 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. A.R. Kreimer, G.M. Clifford, P. Boyle, S. Franceschi, Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol. Biomarkers Prev. 14, 467 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. A.G. Ostor, Natural history of cervical intraepithelial neoplasia: a critical review. Int. J. Gynecol. Pathol. 12, 186 (1993)

    Article  CAS  PubMed  Google Scholar 

  9. N. Jones, Transcriptional regulation by dimerization: two sides to an incestuous relationship. Cell 61, 9 (1990)

    Article  CAS  PubMed  Google Scholar 

  10. P.K. Magnusson, P. Sparen, U.B. Gyllensten, Genetic link to cervical tumours. Nature 400, 6729 (1999)

    Article  CAS  Google Scholar 

  11. V. Moreno, N. Munoz, F.X. Bosch, S. de Sanjose, L.C. Gonzalez, L. Tafur, M. Gili, I. Izarzugaza, C. Navarro, A. Vergara et al., Risk factors for progression of cervical intraepithelial neoplasm grade III to invasive cervical cancer. Cancer Epidemiol. Biomarkers Prev. 4, 459 (1995)

    CAS  PubMed  Google Scholar 

  12. V. Moreno, F.X. Bosch, N. Munoz, C.J. Meijer, K.V. Shah, J.M. Walboomers, R. Herrero, S. Franceschi, Effect of oral contraceptives on risk of cervical cancer in women with human papillomavirus infection: the IARC multicentric case-control study. Lancet 359, 1085 (2002)

    Article  CAS  PubMed  Google Scholar 

  13. N. Munoz, S. Franceschi, C. Bosetti, V. Moreno, R. Herrero, J.S. Smith, K.V. Shah, C.J. Meijer, F.X. Bosch, Role of parity and human papillomavirus in cervical cancer: the IARC multicentric case-control study. Lancet 359, 1093 (2002)

    Article  PubMed  Google Scholar 

  14. M.H. Schiffman, N.J. Haley, J.S. Felton, A.W. Andrews, R.A. Kaslow, W.D. Lancaster, R.J. Kurman, L.A. Brinton, L.B. Lannom, D. Hoffmann, Biochemical epidemiology of cervical neoplasia: measuring cigarette smoke constituents in the cervix. Cancer Res. 47, 3886 (1987)

    CAS  PubMed  Google Scholar 

  15. H. Pfister, Chapter 8: human papillomavirus and skin cancer. J. Natl. Cancer Inst. Monogr. 31, 52 (2003)

    Article  Google Scholar 

  16. M.N. de Koning, S.J. Weissenborn, D. Abeni, J.N. Bouwes Bavinck, S. Euvrard, A.C. Green, C.A. Harwood, L. Naldi, R. Neale, I. Nindl, C.M. Proby, W.G. Quint, F. Sampogna, J. Ter Schegget, L. Struijk, U. Wieland, H.J. Pfister, M.C. Feltkamp, Prevalence and associated factors of betapapillomavirus infections in individuals without cutaneous squamous cell carcinoma. J. Gen. Virol. 90, 1611 (2009)

    Article  PubMed  CAS  Google Scholar 

  17. H.N. Ananthaswamy, S.M. Loughlin, P. Cox, R.L. Evans, S.E. Ullrich, M.L. Kripke, Sunlight and skin cancer: inhibition of p53 mutations in UV-irradiated mouse skin by sunscreens. Nat. Med. 3, 510 (1997)

    Article  CAS  PubMed  Google Scholar 

  18. B.K. Armstrong, A. Kricker, The epidemiology of UV induced skin cancer. J. Photochem. Photobiol. B 63, 8 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. D.S. Preston, R.S. Stern, Nonmelanoma cancers of the skin. N. Engl. J. Med. 327, 1649 (1992)

    Article  CAS  PubMed  Google Scholar 

  20. C. Ateenyi-Agaba, E. Weiderpass, A. Smet, W. Dong, M. Dai, B. Kahwa, H. Wabinga, E. Katongole-Mbidde, S. Franceschi, M. Tommasino, Epidermodysplasia verruciformis human papillomavirus types and carcinoma of the conjunctiva: a pilot study. Br. J. Cancer 90, 1777 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. R. Newton, A review of the aetiology of squamous cell carcinoma of the conjunctiva. Br. J. Cancer 74, 1511 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. E. Schwarz, U.K. Freese, L. Gissmann, W. Mayer, B. Roggenbuck, A. Stremlau, H. zur Hausen, Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314, 111 (1985)

    Article  CAS  PubMed  Google Scholar 

  23. N. Wentzensen, S. Vinokurova, M. von Knebel Doeberitz, Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res. 64, 3878 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. L.M. Alvarez-Salas, J.A. DiPaolo, Molecular approaches to cervical cancer therapy. Curr. Drug Discov. Technol. 4, 208 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. M. Tommasino, L. Crawford, Human papillomavirus E6 and E7: proteins which deregulate the cell cycle. Bioessays 17, 509 (1995)

    Article  CAS  PubMed  Google Scholar 

  26. P.F. Lambert, S.J. Balsitis, A. Shai, S.J.S. Simonson, S.M.G. Williams, Transgenic mouse models for the in vivo analysis of papillomavirus oncogene function, in Papillomavirus Research: From Natural History to Vaccine and Beyond, ed. by M. Saveria Campo (Caister Academic Press, Norfolk, 2006), pp. 213–228

    Google Scholar 

  27. M. Tommasino, R. Accardi, S. Caldeira, W. Dong, I. Malanchi, A. Smet, I. Zehbe, The role of TP53 in cervical carcinogenesis. Hum. Mutat. 21, 307 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. J.M. Huibregtse, M. Scheffner, P.M. Howley, A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 10, 4129 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M. Scheffner, B.A. Werness, J.M. Huibregtse, A.J. Levine, P.M. Howley, The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129 (1990)

    Article  CAS  PubMed  Google Scholar 

  30. M. Scheffner, J.M. Huibregtse, R.D. Vierstra, P.M. Howley, The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495 (1993)

    Article  CAS  PubMed  Google Scholar 

  31. P. Massimi, A. Shai, P. Lambert, L. Banks, HPV E6 degradation of p53 and PDZ containing substrates in an E6AP null background. Oncogene 27, 1800 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. T. Hiller, S. Poppelreuther, F. Stubenrauch, T. Iftner, Comparative analysis of 19 genital human papillomavirus types with regard to p53 degradation, immortalization, phylogeny, and epidemiologic risk classification. Cancer Epidemiol. Biomarkers Prev. 15, 1262 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. M.S. Lechner, L.A. Laimins, Inhibition of p53 DNA binding by human papillomavirus E6 proteins. J. Virol. 68, 4262 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. K. Butz, C. Denk, A. Ullmann, M. Scheffner, F. Hoppe-Seyler, Induction of apoptosis in human papillomaviruspositive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc. Natl. Acad. Sci. USA 97, 6693 (2000)

    Article  CAS  PubMed  Google Scholar 

  35. H.C. Pan, A.E. Griep, Temporally distinct patterns of p53-dependent and p53-independent apoptosis during mouse lens development. Genes Dev. 9, 2157 (1995)

    Article  CAS  PubMed  Google Scholar 

  36. A.E. White, E.M. Livanos, T.D. Tlsty, Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev. 8, 666 (1994)

    Article  CAS  PubMed  Google Scholar 

  37. U.M. Moll, S. Erster, A. Zaika, p53, p63 and p73—solos, alliances and feuds among family members. Biochim. Biophys. Acta 1552, 47 (2001)

    CAS  PubMed  Google Scholar 

  38. J.S. Park, E.J. Kim, J.Y. Lee, H.S. Sin, S.E. NamKoong, S.J. Um, Functional inactivation of p73, a homolog of p53 tumor suppressor protein, by human papillomavirus E6 proteins. Int. J. Cancer 91, 822 (2001)

    Article  CAS  PubMed  Google Scholar 

  39. M.C. Marin, C.A. Jost, M.S. Irwin, J.A. DeCaprio, D. Caput, W. G. Kaelin Jr., Viral oncoproteins discriminate between p53 and the p53 homolog p73. Mol. Cell. Biol. 18, 6316 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. D. Patel, S.M. Huang, L.A. Baglia, D.J. McCance, The E6 protein of human papillomavirus type 16 binds to and inhibits co- activation by CBP and p300. EMBO J. 18, 5061 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. A. Muller-Schiffmann, J. Beckmann, G. Steger, The E6 protein of the cutaneous human papillomavirus type 8 can stimulate the viral early and late promoters by distinct mechanisms. J. Virol. 80, 8718 (2006)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. D. Gardiol, C. Kuhne, B. Glaunsinger, S.S. Lee, R. Javier, L. Banks, Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene 18, 5487 (1999)

    Article  CAS  PubMed  Google Scholar 

  43. L. Funke, S. Dakoji, D.S. Bredt, Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu. Rev. Biochem. 74, 219 (2005)

    Article  CAS  PubMed  Google Scholar 

  44. M.L. Nguyen, M.M. Nguyen, D. Lee, A.E. Griep, P.F. Lambert, The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6’s induction of epithelial hyperplasia in vivo. J. Virol. 77, 6957 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. R.A. Watson, M. Thomas, L. Banks, S. Roberts, Activity of the human papillomavirus E6 PDZ-binding motif correlates with an enhanced morphological transformation of immortalized human keratinocytes. J. Cell Sci. 116, 4925 (2003)

    Article  CAS  PubMed  Google Scholar 

  46. S. Jackson, C. Harwood, M. Thomas, L. Banks, A. Storey, Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes Dev. 14, 3065 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. M. Thomas, L. Banks, Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene 17, 2943 (1998)

    Article  CAS  PubMed  Google Scholar 

  48. C.M. Sorenson, Bcl-2 family members and disease. Biochim. Biophys. Acta 1644, 169 (2004)

    Article  CAS  PubMed  Google Scholar 

  49. A.A. Borbely, M. Murvai, J. Konya, Z. Beck, L. Gergely, F. Li, G. Veress, Effects of human papillomavirus type 16 oncoproteins on surviving gene expression. J. Gen. Virol. 87, 287 (2006)

    Article  CAS  PubMed  Google Scholar 

  50. M.A. James, J.H. Lee, A.J. Klingelhutz, Human papillomavirus type 16 E6 activates NF-kappaB, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner. J. Virol. 80, 5301 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. H. Yuan, F. Fu, J. Zhuo, W. Wang, J. Nishitani, D.S. An, I.S. Chen, X. Liu, Human papillomavirus type 16 E6 and E7 oncoproteins upregulate c-IAP2 gene expression and confer resistance to apoptosis. Oncogene 24, 5069 (2005)

    Article  CAS  PubMed  Google Scholar 

  52. A.J. Klingelhutz, S.A. Foster, J.K. McDougall, Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79 (1996)

    Article  CAS  PubMed  Google Scholar 

  53. J.W. Shay, W.E. Wright, Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis 26, 867 (2005)

    Article  CAS  PubMed  Google Scholar 

  54. L. Gewin, H. Myers, T. Kiyono, D.A. Galloway, Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev. 18, 2269 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. K.M. Bedard, M.P. Underbrink, H.L. Howie, D.A. Galloway, The E6 oncoproteins from human betapapillomaviruses differentially activate telomerase through an E6AP-dependent mechanism and prolong the lifespan of primary keratinocytes. J. Virol. 82, 3894 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. X. Liu, H. Yuan, B. Fu, G.L. Disbrow, T. Apolinario, V. Tomaic, M.L. Kelley, C.C. Baker, J. Huibregtse, R. Schlegel, The E6AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. J. Biol. Chem. 280, 10807 (2005)

    Article  CAS  PubMed  Google Scholar 

  57. T. Veldman, X. Liu, H. Yuan, R. Schlegel, Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc. Natl. Acad. Sci. USA 100, 8211 (2003)

    Article  CAS  PubMed  Google Scholar 

  58. P. Sekaric, J.J. Cherry, E.J. Androphy, Binding of human papillomavirus type 16 E6 to E6AP is not required for activation of hTERT. J. Virol. 82, 71 (2008)

    Article  CAS  PubMed  Google Scholar 

  59. X. Liu, J. Roberts, A. Dakic, Y. Zhang, R. Schlegel, HPV E7 contributes to the telomerase activity of immortalized and tumorigenic cells and augments E6-induced hTERT promoter function. Virology 375, 611 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. S. Lowell, P. Jones, R. Le, I.J. Dunne, F.M. Watt, Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr. Biol. 10, 491 (2000)

    Article  Google Scholar 

  61. T. Yugawa, K. Handa, M. Narisawa-Saito, S. Ohno, M. Fujita, T. Kiyono, Regulation of Notch1 gene expression by p53 in epithelial cells. Mol. Cell. Biol. 27, 3732 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. C. Talora, D.C. Sgroi, C.P. Crum, G.P. Dotto, Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev. 16, 2252 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. I. Malanchi, S. Caldeira, M. Krutzfeldt, M. Giarre, M. Alunni-Fabbroni, M. Tommasino, Identification of a novel activity of human papillomavirus type 16 E6 protein in deregulating the G1/S transition. Oncogene 21, 5665 (2002)

    Article  CAS  PubMed  Google Scholar 

  64. I. Malanchi, R. Accardi, F. Diehl, A. Smet, E. Androphy, J. Hoheisel, M. Tommasino, Human papillomavirus type 16 E6 promotes retinoblastoma protein phosphorylation and cell cycle progression. J. Virol. 78, 13769 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. J. An, D. Mo, H. Liu, M.S. Veena, E.S. Srivatsan, R. Massoumi, M.B. Rettig, Inactivation of the CYLD deubiquitinase by HPV E6 mediates hypoxia-induced NF-kappaB activation. Cancer Cell 14, 394 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. H.L. Howie, R.A. Katzenellenbogen, D.A. Galloway, Papillomavirus E6 proteins. Virology 384, 324 (2009)

    Article  CAS  PubMed  Google Scholar 

  67. F. Mantovani, L. Banks, The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 20, 7874 (2001)

    Article  CAS  PubMed  Google Scholar 

  68. S.S. Tungteakkhun, M. Filippova, J.W. Neidigh, N. Fodor, P.J. Duerksen-Hughes, The interaction between human papillomavirus type 16 and FADD is mediated by a novel E6 binding domain. J. Virol. 82, 9600 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. R.M. Vos, J. Altreuter, E.A. White, P.M. Howley, The ubiquitin-specific peptidase USP15 regulates human papillomavirus type 16 E6 protein stability. J. Virol. 83, 8885 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. K. Munger, J.R. Basile, S. Duensing, A. Eichten, S.L. Gonzalez, M. Grace, V.L. Zacny, Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 20, 7888 (2001)

    Article  CAS  PubMed  Google Scholar 

  71. D. Cobrinik, Pocket proteins and cell cycle control. Oncogene 24, 2796 (2005)

    Article  CAS  PubMed  Google Scholar 

  72. D.K. Dimova, N.J. Dyson, The E2F transcriptional network: old acquaintances with new faces. Oncogene 24, 2810 (2005)

    Article  CAS  PubMed  Google Scholar 

  73. S.G. Hwang, D. Lee, J. Kim, T. Seo, J. Choe, Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J. Biol. Chem. 277, 2923 (2002)

    Article  CAS  PubMed  Google Scholar 

  74. M.J. Antinore, M.J. Birrer, D. Patel, L. Nader, D.J. McCance, The human papillomavirus type 16 E7 gene product interacts with and trans-activates the AP1 family of transcription factors. EMBO J. 15, 1950 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. E. Maldonado, M.E. Cabrejos, L. Banks, J.E. Allende, Human papillomavirus-16 E7 protein inhibits the DNA interaction of the TATA binding transcription factor. J. Cell. Biochem. 85, 663 (2002)

    Article  CAS  PubMed  Google Scholar 

  76. P. Massimi, D. Pim, L. Banks, Human papillomavirus type 16 E7 binds to the conserved carboxy-terminal region of the TATA box binding protein and this contributes to E7 transforming activity. J. Gen. Virol. 78, 2607 (1997)

    Article  CAS  PubMed  Google Scholar 

  77. A.C. Phillips, K.H. Vousden, Analysis of the interaction between human papillomavirus type 16 E7 and the TATA-binding protein, TBP. J. Gen. Virol. 78, 905 (1997)

    Article  CAS  PubMed  Google Scholar 

  78. J.O. Funk, S. Waga, J.B. Harry, E. Espling, B. Stillman, D.A. Galloway, Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 11, 2090 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. D.L. Jones, R.M. Alani, K. Munger, The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 11, 2101 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. K. Zerfaß-Thome, W. Zwerschke, B. Mannhardt, R. Tindle, J. Botz, P. Jansen-Dürr, Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene 13, 2323 (1996)

    PubMed  Google Scholar 

  81. M. Arroyo, S. Bagchi, P. Raychaudhuri, Association of the human papillomavirus type-16 E7 protein with the S-phase-specific E2F-cyclin-A complex. Mol. Cell. Biol. 13, 6537 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. R. Davies, R. Hicks, T. Crook, J. Morris, K. Vousden, Human papillomavirus type-16 E7 associates with a histone H1 kinase and with p107 through sequences necessary for transformation. J. Virol. 67, 2521 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  83. M. Tommasino, J.P. Adamczewski, F. Carlotti, C.F. Barth, R. Manetti, M. Contorni, F. Cavalieri, T. Hunt, L. Crawford, HPV16 E7 protein associates with the protein kinase p33CDK2 and cyclin A. Oncogene 8, 195 (1993)

    CAS  PubMed  Google Scholar 

  84. W. He, D. Staples, C. Smith, C. Fisher, Direct activation of cyclin-dependent kinase 2 by human papillomavirus E7. J. Virol. 77, 10566 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. K. Munger, B.A. Werness, N. Dyson, W.C. Phelps, E. Harlow, P.M. Howley, Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 8, 4099 (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. D.V. Heck, C.L. Yee, P.M. Howley, K. Munger, Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. Proc. Natl. Acad. Sci. USA 89, 4442 (1992)

    Article  CAS  PubMed  Google Scholar 

  87. B.C. Sang, M.S. Barbosa, Single amino acid substitutions in “low-risk” human papillomavirus (HPV) type 6 E7 protein enhance features characteristic of the “high-risk” HPV E7 oncoproteins. Proc. Natl. Acad. Sci. USA 89, 8063 (1992)

    Article  CAS  PubMed  Google Scholar 

  88. S. Caldeira, W. Dong, P. Tomakidi, A. Paradiso, M. Tommasino, Human papillomavirus type 32 does not display in vitro transforming properties. Virology 301, 157 (2002)

    Article  CAS  PubMed  Google Scholar 

  89. F. Ciccolini, G. Di Pasquale, F. Carlotti, L. Crawford, M. Tommasino, Functional studies of E7 proteins from different HPV types. Oncogene 9, 2342 (1994)

    Google Scholar 

  90. W.L. Dong, S. Caldeira, P. Sehr, M. Pawlita, M. Tommasino, Determination of the binding affinity of different human papillomavirus E7 proteins for the tumour suppressor pRb by a plate-binding assay. J. Virol. Methods 98, 91 (2001)

    Article  CAS  PubMed  Google Scholar 

  91. A. Schmitt, J.B. Harry, B. Rapp, F.O. Wettstein, T. Iftner, Comparison of the properties of the E6 and E7 genes of low- and high-risk cutaneous papillomaviruses reveals strongly transforming and high Rb-binding activity for the E7 protein of the low-risk human papillomavirus type 1. J. Virol. 68, 7051 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  92. S.N. Boyer, D.E. Wazer, V. Band, E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res. 56, 4620 (1996)

    CAS  PubMed  Google Scholar 

  93. D.L. Jones, K. Munger, Analysis of the p53-mediated G1 growth arrest pathway in cells expressing the human papillomavirus type 16 E7 oncoprotein. J. Virol. 71, 2905 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  94. M. Giarre, S. Caldeira, I. Malanchi, F. Ciccolini, M.J. Leao, M. Tommasino, Induction of pRb degradation by the human papillomavirus type 16 E7 protein is essential to efficiently overcome p16INK4a-imposed G1 cell cycle arrest. J. Virol. 75, 4705 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. S.L. Gonzalez, M. Stremlau, X. He, J.R. Basile, K. Munger, Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J. Virol. 75, 7583 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. G.A. Darnell, W.A. Schroder, T.M. Antalis, E. Lambley, L. Major, J. Gardner, G. Birrell, A. Cid-Arregui, A. Suhrbier, Human papillomavirus E7 requires the protease calpain to degrade the retinoblastoma protein. J. Biol. Chem. 282, 37492 (2007)

    Article  CAS  PubMed  Google Scholar 

  97. K. Huh, X. Zhou, H. Hayakawa, J.Y. Cho, T.A. Libermann, J. Jin, J.W. Harper, K. Munger, Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J. Virol. 81, 9737 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. S.J. Reshkin, A. Bellizzi, S. Caldeira, V. Albarani, I. Malanchi, M. Poignee, M. Alunni-Fabbroni, V. Casavola, M. Tommasino, Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. FASEB J. 14, 2185 (2000)

    Article  CAS  PubMed  Google Scholar 

  99. M.E. McLaughlin-Drubin, K. Munger, The human papillomavirus E7 oncoprotein. Virology 384, 335 (2009)

    Article  CAS  PubMed  Google Scholar 

  100. A.C. Rodriguez, M. Schiffman, R. Herrero, S. Wacholder, A. Hildesheim, P.E. Castle, D. Solomon, R. Burk, Rapid clearance of human papillomavirus and implications for clinical focus on persistent infections. J. Natl. Cancer Inst. 100, 513 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  101. M.H. Einstein, J.T. Schiller, R.P. Viscidi, H.D. Strickler, P. Coursaget, T. Tan, N. Halsey, D. Jenkins, Clinician’s guide to human papillomavirus immunology: knowns and unknowns. Lancet Infect. Dis. 9, 347 (2009)

    Article  CAS  PubMed  Google Scholar 

  102. U.A. Hasan, E. Bates, F. Takeshita, A. Biliato, R. Accardi, V. Bouvard, M. Mansour, I. Vincent, L. Gissmann, T. Iftner, M. Sideri, F. Stubenrauch, M. Tommasino, TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. J. Immunol. 178, 3186 (2007)

    Article  CAS  PubMed  Google Scholar 

  103. L.V. Ronco, A.Y. Karpova, M. Vidal, P.M. Howley, Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev. 12, 2061 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. J.S. Park, E.J. Kim, H.J. Kwon, E.S. Hwang, S.E. NamKoong, S.J. Um, Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J. Biol. Chem. 275, 6764 (2000)

    Article  CAS  PubMed  Google Scholar 

  105. S.E. Perea, P. Massimi, L. Banks, Human papillomavirus type 16 E7 impairs the activation of the interferon regulatory factor-1. Int. J. Mol. Med. 5, 661 (2000)

    CAS  PubMed  Google Scholar 

  106. J.H. Caberg, P.M. Hubert, D.Y. Begon, M.F. Herfs, P.J. Roncarati, J.J. Boniver, P.O. Delvenne, Silencing of E7 oncogene restores functional E-cadherin expression in human papillomavirus 16-transformed keratinocytes. Carcinogenesis 29, 1441 (2008)

    Article  CAS  PubMed  Google Scholar 

  107. P. Hubert, J.H. Caberg, C. Gilles, L. Bousarghin, E. Franzen-Detrooz, J. Boniver, P. Delvenne, E-cadherin-dependent adhesion of dendritic and Langerhans cells to keratinocytes is defective in cervical human papillomavirus-associated (pre)neoplastic lesions. J. Pathol. 206, 346 (2005)

    Article  CAS  PubMed  Google Scholar 

  108. F.V. Cromme, P.J. Snijders, A.J. van den Brule, P. Kenemans, C.J. Meijer, J.M. Walboomers, MHC class I expression in HPV 16 positive cervical carcinomas is post-transcriptionally controlled and independent from c-myc overexpression. Oncogene 8, 2969 (1993)

    CAS  PubMed  Google Scholar 

  109. A. Vambutas, V.R. Bonagura, B.M. Steinberg, Altered expression of TAP-1 and major histocompatibility complex class I in laryngeal papillomatosis: correlation of TAP-1 with disease. Clin. Diagn. Lab. Immunol. 7, 79 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  110. A. Vambutas, J. DeVoti, W. Pinn, B.M. Steinberg, V.R. Bonagura, Interaction of human papillomavirus type 11 E7 protein with TAP-1 results in the reduction of ATP-dependent peptide transport. Clin. Immunol. 101, 94 (2001)

    Article  CAS  PubMed  Google Scholar 

  111. F. Mota, N. Rayment, S. Chong, A. Singer, B. Chain, The antigen-presenting environment in normal and human papillomavirus (HPV)-related premalignant cervical epithelium. Clin. Exp. Immunol. 116, 33 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. L.L. Villa, K.B. Vieira, X.F. Pei, R. Schlegel, Differential effect of tumor necrosis factor on proliferation of primary human keratinocytes and cell lines containing human papillomavirus types 16 and 18. Mol. Carcinog. 6, 5 (1992)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Ghittoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghittoni, R., Accardi, R., Hasan, U. et al. The biological properties of E6 and E7 oncoproteins from human papillomaviruses. Virus Genes 40, 1–13 (2010). https://doi.org/10.1007/s11262-009-0412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-009-0412-8

Keywords

Navigation