Skip to main content
Log in

Self-Invertible 2D Log-Gabor Wavelets

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Orthogonal and biorthogonal wavelets became very popular image processing tools but exhibit major drawbacks, namely a poor resolution in orientation and the lack of translation invariance due to aliasing between subbands. Alternative multiresolution transforms which specifically solve these drawbacks have been proposed. These transforms are generally overcomplete and consequently offer large degrees of freedom in their design. At the same time their optimization gets a challenging task. We propose here the construction of log-Gabor wavelet transforms which allow exact reconstruction and strengthen the excellent mathematical properties of the Gabor filters. Two major improvements on the previous Gabor wavelet schemes are proposed: first the highest frequency bands are covered by narrowly localized oriented filters. Secondly, the set of filters cover uniformly the Fourier domain including the highest and lowest frequencies and thus exact reconstruction is achieved using the same filters in both the direct and the inverse transforms (which means that the transform is self-invertible). The present transform not only achieves important mathematical properties, it also follows as much as possible the knowledge on the receptive field properties of the simple cells of the Primary Visual Cortex (V1) and on the statistics of natural images. Compared to the state of the art, the log-Gabor wavelets show excellent ability to segregate the image information (e.g. the contrast edges) from spatially incoherent Gaussian noise by hard thresholding, and then to represent image features through a reduced set of large magnitude coefficients. Such characteristics make the transform a promising tool for processing natural images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carandini, M., Demb, J.B., Mante, V., Tolhurst, D.J., Dan, Y., Olshausen, B.A., Gallant, J.L. and Rust, N.C. 2005. Do we know what the early visual system does? J Neurosci, 25(46):10577–10597.

    Article  Google Scholar 

  • Chang, S.G., Yu, B. and Vetterli, M. 2000. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. on Image Proc., 9(9):1532–1546.

    Article  MATH  MathSciNet  Google Scholar 

  • Chang, S.G., Yu, B. and Vetterli, M. 2000. Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Trans. on Image Processing, 9(9):1522–1531.

    Article  MATH  MathSciNet  Google Scholar 

  • Christiansen, O. 2002. Time-Frequency Analysis and its Applications in Denoising. PhD thesis, Department of Informatics, University of Bergen, Norway.

  • Clausi, D.A. and Jernigan, M.E. 2000. Designing Gabor filters for optimal texture separability. Pattern Recognition, 33:1835–1849.

    Article  Google Scholar 

  • Coifman, R.R. and Donoho, D. 1995. Translation-invariant de-noising. In Wavelets and Statistics, Lecture Notes in Statistics 103, Springer Verlag: NY. A. Antoniadis and G. Oppenheim (eds), pp. 125–150.

    Google Scholar 

  • Cristóbal, G. and Navarro, R. 1994. Space and frequency variant image enhancement based on a Gabor representation. Patt. Rec. Letters, 15(3):273–277.

    Article  MATH  Google Scholar 

  • Daubechies, I. 1992. Ten Lectures on Wavelets. SIAM, Philadelphia: PA.

    MATH  Google Scholar 

  • Daugman, J. 1985. Uncertainty relation for resolution in space, spatial frequency and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A, 2(7):1160–1169.

    Google Scholar 

  • Daugman, J. 1988. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Trans. Acoust. Speech Signal Proc., 36(7):1169–1179.

    Article  MATH  Google Scholar 

  • DeValois, R.L., Albrecht, D.G. and Thorell, L.G. 1982. Spatial frequency selectivity of cells in macaque visual cortex. Vision Res., 22:545–559.

    Article  Google Scholar 

  • Do, M.N. and Vetterli, M. 2005. The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. on Image Proc., 14(12):2091–2106.

    Article  MathSciNet  Google Scholar 

  • Doi, E. and Lewicki, M.S. 2005. Relations between the statistical regularities of natural images and the response properties of the early visual system. Japanese Cognitive Science Society, SIG P&P, pp. 1–8.

  • Donoho, D. 1995. De-noising by soft-thresholding. IEEE Trans. Inf. Theory, 41(3):613–627.

    Article  MATH  MathSciNet  Google Scholar 

  • Field, D.J. 1987. Relation between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A, 4(12):2379–2394.

    Google Scholar 

  • Fischer, S., Cristóbal, G. and Redondo, R. 2006. Sparse overcomplete Gabor wavelet representation based on local competitions. IEEE Trans. on Image Proc., 15(2):265–272.

    Article  Google Scholar 

  • Fischer, S., Redondo, R. and Cristóbal, G. 2005. Sparse edge coding using overcomplete Gabor wavelets. In IEEE Int. Conf. on Image Proc., vol. 1, pp. 85–88.

    Article  Google Scholar 

  • Fischer, S., Redondo, R., Perrinet, L. and Cristóbal, G. 2005. Sparse Gabor wavelets by local operations. In Proc. SPIE, Bioengineered and Bioinspired Systems II, G. Linan-Cembrano; R.A. Carmona (eds), Vol. 5839, pp. 75–86.

    Google Scholar 

  • Fischer, S., Redondo, R., Perrinet, L. and Cristóbal, G. Sparse approximation of images inspired from the functional architecture of the primary visual areas. EURASIP JASP, special issue on Image Perception in press.

  • Gabor, D. 1946. Theory of communication. J. Inst. Electr. Eng., 93:429–457.

    Google Scholar 

  • Grigorescu, C., Petkov, N. and Westenberg, M.A. 2003. Contour detection based on nonclassical receptive field inhibition. IEEE Trans. on Image Proc., 12(7):729–739.

    Article  Google Scholar 

  • Gross, M.H. and Koch, R. 1995. Visualization of multidimensional shape and texture features in laser range data using complex-valued Gabor wavelets. IEEE Trans. Visual. and Comput. Graphics, 1(1):44–59.

    Article  Google Scholar 

  • Hamza, A.B., Krim, H. and Unal, G. 2002. Unifying probabilistic and variational estimation. IEEE Signal Proc., 19(5):37–47.

    Article  Google Scholar 

  • Heitger, F., Von der Heydt, R., Peterhans, E., Rosenthaler, L. and Kubler, O. 1998. Simulation of neural contour mechanisms: Representing anomalous contours. Image and Vision Computing, 16:409–423.

    Article  Google Scholar 

  • Hubel, D. 1988. Eye, Brain and Vision. WH Freeman: Sc. Am. Lib. Series, New York.

    Google Scholar 

  • Kingsbury, N.G. 2001. Complex wavelets for shift invariant analysis and filtering of signals. Jour. of Applied and Comput. Harmonic Analysis, 10(3):234–253.

    Article  MATH  MathSciNet  Google Scholar 

  • Kovesi, P. 1999. Phase preserving denoising of images. In Australian Patt. Recog. Soc. Conf. DICTA. Perth WA., pp. 212–217.

  • Kovesi, P. 2003. Phase congruency detects corners and edges. In Australian Patt. Recog. Soc. Conf. DICTA. Sydney WA., pp. 309–318.

  • Krüger, V. 2001. Gabor Wavelet Networks for Object Representation. PhD thesis, Christian-Albrechts-University Kiel, Technical Faculty.

  • Lee, T.S. 1996. Image representation using 2D Gabor wavelets. IEEE Trans. Pattern Anal. Mach. Intell., 18(10):959–971.

    Article  Google Scholar 

  • Li, X. and Orchard, M.T. 2000. Spatially adaptive image denoising under overcomplete expansion. In Int. Conf. on Image Proc., Vol. 3, pp. 300–303.

    Google Scholar 

  • Marcelja, S. 1980. Mathematical description of the responses of simple cortical cells. J. Opt. Soc. Am. A, 70(11):1297–1300.

    Article  MathSciNet  Google Scholar 

  • Mingolla, E., Ross, W. and Grossberg, S. 1999. A neural network for enhancing boundaries and surfaces in synthetic aperture radar images. Neural Networks, 12(3):499–511.

    Article  Google Scholar 

  • Morlet, J., Arens, G., Fourgeau, E. and Girard, D. 1982. Wave propagation and sampling theory. Geophysics, 47:203–236.

    Article  Google Scholar 

  • Nestares, O., Navarro, R., Portilla, J. and Tabernero, A. 1998. Efficient spatial-domain implementation of a multiscale image representation based on Gabor functions. Jour. of Eletr. Imag., 7(1):166–173.

    Article  Google Scholar 

  • Olshausen, B. and Field, D.J. 1996. Wavelet-like receptive fields emerge from a network that learns sparse codes for natural images. Nature, 381:607–609.

    Article  Google Scholar 

  • Perrinet, L. 2004. Feature detection using spikes: The greedy approach. J. Physiology (Paris), 98(4–6):530–539.

    Article  Google Scholar 

  • Perrinet, L., Samuelides, M. and Thorpe, S. 2004. Coding static natural images using spiking event times: Do neurons cooperate? IEEE Trans. on Neural Networks, 15(5):1164–1175.

    Article  Google Scholar 

  • Pollen, D.A. and Ronner, S.F. 1981. Phase relationships between adjacent simple cells in the visual cortex. Science, 212:1409–1411.

    Article  Google Scholar 

  • Portilla, J., Navarro, R., Nestares, O. and Tabernero, A. 1996. Texture synthesis-by-analysis based on a multiscale early-vision model. Opt. Eng., 35(8):1–15.

    Article  Google Scholar 

  • Portilla, J. and Simoncelli, E.P. 2000. A parametric texture model based on joint statistics of complex wavelet coefficients. Int. Jour. Comp. Vis., 40(1):49–70.

    Article  MATH  Google Scholar 

  • Portilla, J., Strela, V., Wainwright, M. and Simoncelli, E. 2003. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Proc., 12(11):1338–1351.

    Article  MathSciNet  Google Scholar 

  • Pötzsch, M., Krüger, N. and Malsburg, C. 1996. Improving object recognition by transforming Gabor filter responses. Network: Computation in Neural Systems, 7(2):341–347.

    Article  Google Scholar 

  • Redondo, R., Fischer, S., Perrinet, L. and Cristóbal, G. 2005. Modeling of simple cells through a sparse overcomplete Gabor wavelet representation based on local inhibition and facilitation. In European Conf. On Visual Perception, A Coruña, Spain.

  • Redondo, R., Sroubek, F., Fischer, S. and Cristóbal, G. in press. A multiresolution-based fusion scheme through log-Gabor wavelets and a multisize windows technique. Information Fusion.

  • Ro, Y.M., Kim, M., Kang, H.K., Manjunath, B.S. and Kim, J. 2001. MPEG-7 homogeneous texture descriptor. ETRI Journal, 23(2):41–51.

    Google Scholar 

  • Simoncelli, E.P., Freeman, W.T. and Heeger, D.J. 1992. Shiftable multiscale transforms. IEEE Trans. Inf. Theory, 38(2):587–607.

    Article  MathSciNet  Google Scholar 

  • Sroubek, F. and Flusser, J. 2003. Multichannel blind iterative image restoration. IEEE Trans. Image Proc., 12(9):1094–1106.

    Article  MathSciNet  Google Scholar 

  • Starck, J.L., Candès, E.J. and Donoho, D.L. 2002. The curvelet transform for image denoising. IEEE Trans. on Image Proc., 11(6):670–684.

    Article  Google Scholar 

  • Taswell, C. 2000. The what, how and why of wavelet shrinkage denoising. Computing in Science and Engineering, pp. 12–19.

  • Tschumperlé, D. and Deriche, R. 2005. Vector-valued image regularization with PDE's: A common framework for different applications. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27(4):506–517.

    Article  Google Scholar 

  • Wurtz, R. 1994. Multilayer Dynamic Link Networks for Establishing Image Point Correspondences and Visual Object Recognition. PhD thesis, Bochum University.

  • Zhong, S. and Cherkassky, V. 2000. Image denoising using wavelet thresholding and model selection. In Int. Conf. on Image Proc., Vol. 3, pp. 262–265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, S., Šroubek, F., Perrinet, L. et al. Self-Invertible 2D Log-Gabor Wavelets. Int J Comput Vis 75, 231–246 (2007). https://doi.org/10.1007/s11263-006-0026-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-006-0026-8

Keywords

Navigation