Skip to main content
Log in

Local and Nonlocal Discrete Regularization on Weighted Graphs for Image and Mesh Processing

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We propose a discrete regularization framework on weighted graphs of arbitrary topology, which unifies local and nonlocal processing of images, meshes, and more generally discrete data. The approach considers the problem as a variational one, which consists in minimizing a weighted sum of two energy terms: a regularization one that uses the discrete p-Dirichlet form, and an approximation one. The proposed model is parametrized by the degree p of regularity, by the graph structure and by the weight function. The minimization solution leads to a family of simple linear and nonlinear processing methods. In particular, this family includes the exact expression or the discrete version of several neighborhood filters, such as the bilateral and the nonlocal means filter. In the context of images, local and nonlocal regularizations, based on the total variation models, are the continuous analog of the proposed model. Indirectly and naturally, it provides a discrete extension of these regularization methods for any discrete data or functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, L., Guichard, F., Lions, P.-L., & Morel, J.-M. (1993). Axioms and fundamental equations of image processing. Archive for Rational Mechanics and Analysis, 123(3), 199–257.

    Article  MATH  MathSciNet  Google Scholar 

  • Arbeláez, P. A., & Cohen, L. D. (2004). Energy partitions and image segmentation. Journal of Mathematical Imaging and Vision, 20(1–2), 43–57.

    Article  MathSciNet  Google Scholar 

  • Aubert, G., & Kornprobst, P. (2006). Applied mathematical sciences : Vol. 147. Mathematical problems in image processing, partial differential equations and the calculus of variations (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Bajaj, C. L., & Xu, G. (2003). Anisotropic diffusion of surfaces and functions on surfaces. ACM Transactions on Graphics, 22(1), 4–32.

    Article  Google Scholar 

  • Barash, D. (2002). A fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation. IEEE Transactions Pattern Analysis and Machine Intelligence, 24(6), 844–847.

    Article  Google Scholar 

  • Bensoussan, A., & Menaldi, J.-L. (2005). Difference equations on weighted graphs. Journal of Convex Analysis, 12(1), 13–44.

    MATH  MathSciNet  Google Scholar 

  • Bobenko, A. I., & Schröder, P. (2005). Discrete Willmore flow. In M. Desbrun & H. Pottmann (Eds.), Eurographics symposium on geometry processing (pp. 101–110).

  • Bougleux, S., & Elmoataz, A. (2005). Image smoothing and segmentation by graph regularization. In LNCS : Vol. 3656. Proc. int. symp. on visual computing (ISVC) (pp. 745–752). Berlin: Springer.

    Google Scholar 

  • Bougleux, S., Elmoataz, A., & Melkemi, M. (2007a). Discrete regularization on weighted graphs for image and mesh filtering. In F. Sgallari, A. Murli, & N. Paragios (Eds.), LNCS : Vol. 4485. Proc. of the 1st int. conf. on scale space and variational methods in computer vision (SSVM) (pp. 128–139). Berlin: Springer.

    Chapter  Google Scholar 

  • Bougleux, S., Melkemi, M., & Elmoataz, A. (2007b). Local Beta-Crusts for simple curves reconstruction. In C. M. Gold (Ed.), 4th international symposium on Voronoi diagrams in science and engineering (ISVD’07) (pp. 48–57). IEEE Computer Society.

  • Brox, T., & Cremers, D. (2007). Iterated nonlocal means for texture restoration. In F. Sgallari, A. Murli, & N. Paragios (Eds.), LNCS : Vol. 4485. Proc. of the 1st int. conf. on scale space and variational methods in computer vision (SSVM) (pp. 12–24). Berlin: Springer.

    Google Scholar 

  • Buades, A., Coll, B., & Morel, J.-M. (2005). A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation, 4(2), 490–530.

    Article  MATH  MathSciNet  Google Scholar 

  • Chambolle, A. (2005). Total variation minimization and a class of binary MRF models. In LNCS : Vol. 3757. Proc. of the 5th int. work. EMMCVPR (pp. 136–152). Berlin: Springer.

    Google Scholar 

  • Chan, T., & Shen, J. (2005). Image processing and analysis—variational, PDE, wavelets, and stochastic methods. SIAM.

  • Chan, T., Osher, S., & Shen, J. (2001). The digital TV filter and nonlinear denoising. IEEE Transactions on Image Processing, 10(2), 231–241.

    Article  MATH  Google Scholar 

  • Chung, F. (1997). Spectral graph theory. CBMS Regional Conference Series in Mathematics, 92, 1–212.

    Google Scholar 

  • Clarenz, U., Diewald, U., & Rumpf, M. (2000). Anisotropic geometric diffusion in surface processing. In VIS’00: Proc. of the conf. on visualization (pp. 397–405). IEEE Computer Society Press.

  • Coifman, R., Lafon, S., Lee, A., Maggioni, M., Nadler, B., Warner, F., & Zucker, S. (2005). Geometric diffusions as a tool for harmonic analysis and structure definition of data. Proc. of the National Academy of Sciences, 102(21).

  • Coifman, R., Lafon, S., Maggioni, M., Keller, Y., Szlam, A., Warner, F., & Zucker, S. (2006). Geometries of sensor outputs, inference, and information processing. In Proc. of the SPIE: intelligent integrated microsystems (Vol. 6232).

  • Cvetković, D. M., Doob, M., & Sachs, H. (1980). Spectra of graphs, theory and application. Pure and applied mathematics. San Diego: Academic Press.

    Google Scholar 

  • Darbon, J., & Sigelle, M. (2004). Exact optimization of discrete constrained total variation minimization problems. In R. Klette & J. D. Zunic (Eds.), LNCS : Vol. 3322. Proc. of the 10th int. workshop on combinatorial image analysis (pp. 548–557). Berlin: Springer.

    Google Scholar 

  • Desbrun, M., Meyer, M., Schröder, P., & Barr, A. (2000). Anisotropic feature-preserving denoising of height fields and bivariate data. Graphics Interface, 145–152.

  • Fleishman, S., Drori, I., & Cohen-Or, D. (2003). Bilateral mesh denoising. ACM Transactions on Graphics, 22(3), 950–953.

    Article  Google Scholar 

  • Gilboa, G., & Osher, S. (2007a). Nonlocal linear image regularization and supervised segmentation. SIAM Multiscale Modeling and Simulation, 6(2), 595–630.

    Article  MATH  MathSciNet  Google Scholar 

  • Gilboa, G., & Osher, S. (2007b). Nonlocal operators with applications to image processing (Technical Report 07-23). UCLA, Los Angeles, USA.

  • Griffin, L. D. (2000). Mean, median and mode filtering of images. Proceedings: Mathematical, Physical and Engineering Sciences, 456(2004), 2995–3004.

    Article  MATH  MathSciNet  Google Scholar 

  • Hein, M., Audibert, J.-Y., & von Luxburg, U. (2007). Graph Laplacians and their convergence on random neighborhood graphs. Journal of Machine Learning Research, 8, 1325–1368.

    MathSciNet  Google Scholar 

  • Hildebrandt, K., & Polthier, K. (2004). Anisotropic filtering of non-linear surface features. Eurographics 2004: Comput. Graph. Forum, 23(3), 391–400.

    Article  Google Scholar 

  • Jones, T. R., Durand, F., & Desbrun, M. (2003). Non-iterative, feature-preserving mesh smoothing. ACM Transactions on Graphics, 22(3), 943–949.

    Article  Google Scholar 

  • Kervrann, C., Boulanger, J., & Coupé, P. (2007). Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal. In F. Sgallari, A. Murli, & N. Paragios (Eds.), LNCS : Vol. 4485. Proc. of the 1st int. conf. on scale space and variational methods in computer vision (SSVM) (pp. 520–532). Berlin: Springer.

    Chapter  Google Scholar 

  • Kimmel, R., Malladi, R., & Sochen, N. (2000). Images as embedding maps and minimal surfaces: Movies, color, texture, and volumetric medical images. International Journal of Computer Vision, 39(2), 111–129.

    Article  MATH  Google Scholar 

  • Kinderman, S., Osher, S., & Jones, S. (2005). Deblurring and denoising of images by nonlocal functionals. SIAM Multiscale Modeling and Simulation, 4(4), 1091–1115.

    Article  Google Scholar 

  • Lee, J. S. (1983). Digital image smoothing and the sigma filter. Computer Vision, Graphics, and Image Processing, 24(2), 255–269.

    Article  Google Scholar 

  • Lezoray, O., Elmoataz, A., & Bougleux, S. (2007). Graph regularization for color image processing. Computer Vision and Image Understanding, 107(1–2), 38–55.

    Article  Google Scholar 

  • Lopez-Perez, L., Deriche, R., & Sochen, N. (2004). The Beltrami flow over triangulated manifolds. In LNCS : Vol. 3117. ECCV 2004 workshops CVAMIA and MMBIA (pp. 135–144). Berlin: Springer.

    Google Scholar 

  • Meila, M., & Shi, J. (2000). Learning segmentation by random walks. Advances in Neural Information Processing Systems, 13, 873–879.

    Google Scholar 

  • Meyer, F. (2001). An overview of morphological segmentation. International Journal of Pattern Recognition and Artificial Intelligence, 15(7), 1089–1118.

    Article  Google Scholar 

  • Mrázek, P., Weickert, J., & Bruhn, A. (2006). On robust estimation and smoothing with spatial and tonal kernels. In Computational imaging and vision : Vol. 31. Geometric properties from incomplete data (pp. 335–352). Berlin: Springer.

    Chapter  Google Scholar 

  • Osher, S., & Shen, J. (2000). Digitized PDE method for data restoration. In E. G. A. Anastassiou (Ed.), In analytical-computational methods in applied mathematics (pp. 751–771). London: Chapman & Hall/CRC.

    Google Scholar 

  • Paragios, N., Chen, Y., & Faugeras, O. (Eds.) (2005). Handbook of mathematical models in computer vision. Berlin: Springer.

    MATH  Google Scholar 

  • Paris, S., Kornprobst, P., Tumblin, J., & Durand, F. (2007). A gentle introduction to bilateral filtering and its applications. In SIGGRAPH ’07: ACM SIGGRAPH 2007 courses. Washington: ACM.

  • Peyré, G. (2008). Image processing with non-local spectral bases. SIAM Multiscale Modeling and Simulation, 7(2), 731–773.

    Article  Google Scholar 

  • Requardt, M. (1997). A new approach to functional analysis on graphs, the connes-spectral triple and its distance function.

  • Requardt, M. (1998). Cellular networks as models for Planck-scale physics. Journal of Physics A: Mathematical and General, 31, 7997–8021.

    Article  MATH  MathSciNet  Google Scholar 

  • Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60(1–4), 259–268.

    Article  MATH  Google Scholar 

  • Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.

    Article  Google Scholar 

  • Smith, S., & Brady, J. (1997). SUSAN—a new approach to low level image processing. International Journal of Computer Vision (IJCV), 23, 45–78.

    Article  Google Scholar 

  • Sochen, N., Kimmel, R., & Bruckstein, A. M. (2001). Diffusions and confusions in signal and image processing. Journal of Mathematical Imaging and Vision, 14(3), 195–209.

    Article  MATH  MathSciNet  Google Scholar 

  • Szlam, A. D., Maggioni, M., & Coifman, R. R. (2006). A general framework for adaptive regularization based on diffusion processes on graphs (Technical Report YALE/DCS/TR1365). YALE.

  • Tasdizen, T., Whitaker, R., Burchard, P., & Osher, S. (2003). Geometric surface processing via normal maps. ACM Transactions on Graphics, 22(4), 1012–1033.

    Article  Google Scholar 

  • Taubin, G. (1995). A signal processing approach to fair surface design. In SIGGRAPH’95: Proc. of the 22nd annual conference on computer graphics and interactive techniques (pp. 351–358). New York: ACM Press.

    Chapter  Google Scholar 

  • Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and color images. In ICCV’98: Proc. of the 6th int. conf. on computer vision (pp. 839–846). IEEE Computer Society.

  • Weickert, J. (1998). Anisotropic diffusion in image processing. Leipzig: Teubner.

    MATH  Google Scholar 

  • Xu, G. (2004). Discrete Laplace-Beltrami operators and their convergence. Computer Aided Geometric Design, 21, 767–784.

    Article  MATH  MathSciNet  Google Scholar 

  • Yagou, H., Ohtake, Y., & Belyaev, A. (2002). Mesh smoothing via mean and median filtering applied to face normals. In Proc. of the geometric modeling and processing (GMP’02)—theory and applications (pp. 195–204). IEEE Computer Society.

  • Yoshizawa, S., Belyaev, A., & Seidel, H.-P. (2006). Smoothing by example: mesh denoising by averaging with similarity-based weights. In Proc. international conference on shape modeling and applications (pp. 38–44).

  • Zhou, D., & Schölkopf, B. (2005). Regularization on discrete spaces. In LNCS : Vol. 3663. Proc. of the 27th DAGM symp. (pp. 361–368). Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Bougleux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bougleux, S., Elmoataz, A. & Melkemi, M. Local and Nonlocal Discrete Regularization on Weighted Graphs for Image and Mesh Processing. Int J Comput Vis 84, 220–236 (2009). https://doi.org/10.1007/s11263-008-0159-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-008-0159-z

Keywords

Navigation