Skip to main content
Log in

Unified Quality Assessment of in-the-Wild Videos with Mixed Datasets Training

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Video quality assessment (VQA) is an important problem in computer vision. The videos in computer vision applications are usually captured in the wild. We focus on automatically assessing the quality of in-the-wild videos, which is a challenging problem due to the absence of reference videos, the complexity of distortions, and the diversity of video contents. Moreover, the video contents and distortions among existing datasets are quite different, which leads to poor performance of data-driven methods in the cross-dataset evaluation setting. To improve the performance of quality assessment models, we borrow intuitions from human perception, specifically, content dependency and temporal-memory effects of human visual system. To face the cross-dataset evaluation challenge, we explore a mixed datasets training strategy for training a single VQA model with multiple datasets. The proposed unified framework explicitly includes three stages: relative quality assessor, nonlinear mapping, and dataset-specific perceptual scale alignment, to jointly predict relative quality, perceptual quality, and subjective quality. Experiments are conducted on four publicly available datasets for VQA in the wild, i.e., LIVE-VQC, LIVE-Qualcomm, KoNViD-1k, and CVD2014. The experimental results verify the effectiveness of the mixed datasets training strategy and prove the superior performance of the unified model in comparison with the state-of-the-art models. For reproducible research, we make the PyTorch implementation of our method available at https://github.com/lidq92/MDTVSFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Video-level features of BRISQUE are the average pooling of its frame-level features.

References

  • Bampis, C. G., Li, Z., Moorthy, A. K., Katsavounidis, I., Aaron, A., & Bovik, A. C. (2017). Study of temporal effects on subjective video quality of experience. IEEE Transactions on Image Processing, 26(11), 5217–5231.

    Article  MathSciNet  Google Scholar 

  • Barron, J. T. (2019). A general and adaptive robust loss function. In IEEE conference on computer vision and pattern recognition (CVPR), pp. 4331–4339.

  • Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

  • Choi, L. K., & Bovik, A. C. (2018). Video quality assessment accounting for temporal visual masking of local flicker. Signal Processing: Image Communication, 67, 182–198.

    Google Scholar 

  • Deng, J., Dong, W., Socher, R., Li, LJ., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In IEEE conference on computer vision and pattern recognition (CVPR), pp. 248–255.

  • Dodge, S., & Karam, L. (2016). Understanding how image quality affects deep neural networks. In International conference on quality of multimedia experience (QoMEX), pp. 1–6.

  • Freitas, P. G., Akamine, W. Y., & Farias, M. C. (2018). Using multiple spatio-temporal features to estimate video quality. Signal Processing: Image Communication, 64, 1–10.

    Google Scholar 

  • Ghadiyaram, D., & Bovik, A. C. (2017). Perceptual quality prediction on authentically distorted images using a bag of features approach. Journal of Vision, 17(1), 32–32.

    Article  Google Scholar 

  • Ghadiyaram, D., Pan, J., Bovik, A. C., Moorthy, A. K., Panda, P., & Yang, K. C. (2018). In-capture mobile video distortions: A study of subjective behavior and objective algorithms. IEEE Transactions on Circuits and Systems for Video Technology, 28(9), 2061–2077.

    Article  Google Scholar 

  • He, H., Zhang, J., Zhang, Q., & Tao, D. (2019). Grapy-ML: Graph pyramid mutual learning for cross-dataset human parsing. arXiv preprint arXiv:1911.12053.

  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In IEEE conference on computer vision and pattern recognition (CVPR), pp. 770–778.

  • Hosu, V., Hahn, F., Jenadeleh, M., Lin, H., Men, H., Szirányi, T., Li, S., & Saupe, D. (2017). The Konstanz natural video database (KoNViD-1k). In International conference on quality of multimedia experience (QoMEX), pp. 1–6.

  • Isogawa, M., Mikami, D., Takahashi, K., Iwai, D., Sato, K., & Kimata, H. (2019). Which is the better inpainted image? Training data generation without any manual operations. International Journal of Computer Vision, 127(11–12), 1751–1766.

    Article  Google Scholar 

  • Juluri, P., Tamarapalli, V., & Medhi, D. (2015). Measurement of quality of experience of video-on-demand services: A survey. IEEE Communications Surveys and Tutorials, 18(1), 401–418.

    Article  Google Scholar 

  • Kang, L., Ye, P., Li, Y., & Doermann, D. (2014). Convolutional neural networks for no-reference image quality assessment. In IEEE conference on computer vision and pattern recognition (CVPR), pp. 1733–1740.

  • Kim, W., Kim, J., Ahn, S., Kim, J., & Lee, S. (2018). Deep video quality assessor: From spatio-temporal visual sensitivity to a convolutional neural aggregation network. In European conference on computer vision (ECCV), pp. 219–234.

  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

  • Korhonen, J. (2019). Two-level approach for no-reference consumer video quality assessment. IEEE Transactions on Image Processing, 28(12), 5923–5938.

    Article  MathSciNet  Google Scholar 

  • Krasula, L., Yoann, B., & Le Callet, P. (2020). Training objective image and video quality estimators using multiple databases. IEEE Transactions on Multimedia, 22(4), 961–969.

    Article  Google Scholar 

  • Lasinger, K., Ranftl, R., Schindler, K., & Koltun, V. (2019). Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. arXiv preprint arXiv:1907.01341.

  • Li, D., Jiang, T., & Jiang, M. (2019a). Quality assessment of in-the-wild videos. In ACM international conference on multimedia (MM), pp. 2351–2359.

  • Li, D., Jiang, T., Lin, W., & Jiang, M. (2019b). Which has better visual quality: The clear blue sky or a blurry animal? IEEE Transactions on Multimedia, 21(5), 1221–1234.

    Article  Google Scholar 

  • Li, D., Jiang, T., & Jiang, M. (2020). Norm-in-norm loss with faster convergence and better performance for image quality assessment. In ACM International conference on multimedia (MM), pp. 789–797.

  • Li, X., Guo, Q., & Lu, X. (2016a). Spatiotemporal statistics for video quality assessment. IEEE Transactions on Image Processing, 25(7), 3329–3342.

    Article  MathSciNet  Google Scholar 

  • Li, Y., Po, L. M., Cheung, C. H., Xu, X., Feng, L., Yuan, F., et al. (2016b). No-reference video quality assessment with 3D shearlet transform and convolutional neural networks. IEEE Transactions on Circuits and Systems for Video Technology, 26(6), 1044–1057.

    Article  Google Scholar 

  • Li, YJ., Lin, CS., Lin, YB., & Wang, YCF. (2019c). Cross-dataset person re-identification via unsupervised pose disentanglement and adaptation. In IEEE international conference on computer vision (ICCV), pp. 7919–7929.

  • Lin, KY., & Wang, G. (2018). Hallucinated-IQA: No-reference image quality assessment via adversarial learning. In IEEE conference on computer vision and pattern recognition (CVPR), pp. 732–741.

  • Liu, W., Duanmu, Z., & Wang, Z. (2018). End-to-end blind quality assessment of compressed videos using deep neural networks. In ACM international conference on multimedia (MM), pp. 546–554.

  • Liu, X., van de Weijer, J., & Bagdanov, A. D. (2017). RankIQA: Learning from rankings for no-reference image quality assessment. In IEEE international conference on computer vision (ICCV), pp. 1040–1049.

  • Lu, W., He, R., Yang, J., Jia, C., & Gao, X. (2019). A spatiotemporal model of video quality assessment via 3D gradient differencing. Information Sciences, 478, 141–151.

    Article  Google Scholar 

  • Lv, J., Chen, W., Li, Q., & Yang, C. (2018). Unsupervised cross-dataset person re-identification by transfer learning of spatial-temporal patterns. In IEEE conference on computer vision and pattern recognition (CVPR), pp. 7948–7956.

  • Ma, K., Wu, Q., Wang, Z., Duanmu, Z., Yong, H., Li, H., & Zhang, L. (2016). Group MAD competition—a new methodology to compare objective image quality models. In IEEE conference on computer vision and pattern recognition (CVPR), pp. 1664–1673.

  • Ma, K., Duanmu, Z., & Wang, Z. (2018). Geometric transformation invariant image quality assessment using convolutional neural networks. In IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 6732–6736.

  • Manasa, K., & Channappayya, S. S. (2016). An optical flow-based no-reference video quality assessment algorithm. In IEEE international conference on image processing (ICIP), 1 pp. 2400–2404.

  • Men, H., Lin, H., & Saupe, D. (2017). Empirical evaluation of no-reference VQA methods on a natural video quality database. In International conference on quality of multimedia experience (QoMEX), pp. 1–3.

  • Men, H., Lin, H., & Saupe, D. (2018). Spatiotemporal feature combination model for no-reference video quality assessment. In International conference on quality of multimedia experience (QoMEX), pp. 1–3.

  • Mittal, A., Moorthy, A. K., & Bovik, A. C. (2012). No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing, 21(12), 4695–4708.

    Article  MathSciNet  Google Scholar 

  • Mittal, A., Soundararajan, R., & Bovik, A. C. (2013). Making a “completely blind” image quality analyzer. IEEE Signal Processing Letters, 20(3), 209–212.

    Article  Google Scholar 

  • Mittal, A., Saad, M. A., & Bovik, A. C. (2016). A completely blind video integrity oracle. IEEE Transactions on Image Processing, 25(1), 289–300.

    Article  MathSciNet  Google Scholar 

  • Moorthy, A. K., Choi, L. K., Bovik, A. C., & De Veciana, G. (2012). Video quality assessment on mobile devices: Subjective, behavioral and objective studies. IEEE Journal of Selected Topics in Signal Processing, 6(6), 652–671.

    Article  Google Scholar 

  • Nieto, RG., Restrepo, HDB., & Cabezas, I. (2019). How video object tracking is affected by in-capture distortions? In IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 2227–2231.

  • Nuutinen, M., Virtanen, T., Vaahteranoksa, M., Vuori, T., Oittinen, P., & Häkkinen, J. (2016). CVD2014–a database for evaluating no-reference video quality assessment algorithms. IEEE Transactions on Image Processing, 25(7), 3073–3086.

    Article  MathSciNet  Google Scholar 

  • Park, J., Seshadrinathan, K., Lee, S., & Bovik, A. C. (2013). Video quality pooling adaptive to perceptual distortion severity. IEEE Transactions on Image Processing, 22(2), 610–620.

    Article  MathSciNet  Google Scholar 

  • Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). PyTorch: An imperative style, high-performance deep learning library. In Advances in neural information processing systems (NeurIPS), pp. 8024–8035.

  • Rippel, O., Nair, S., Lew, C., Branson, S., Anderson, AG., & Bourdev, L. (2019). Learned video compression. In IEEE international conference on computer vision (ICCV), pp. 3454–3463.

  • Saad, M. A., Bovik, A. C., & Charrier, C. (2014). Blind prediction of natural video quality. IEEE Transactions on Image Processing, 23(3), 1352–1365.

    Article  MathSciNet  Google Scholar 

  • Seshadrinathan, K., & Bovik, A. C. (2010). Motion tuned spatio-temporal quality assessment of natural videos. IEEE Transactions on Image Processing, 19(2), 335–350.

    Article  MathSciNet  Google Scholar 

  • Seshadrinathan, K., & Bovik, AC. (2011). Temporal hysteresis model of time varying subjective video quality. In IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 1153–1156.

  • Seshadrinathan, K., Soundararajan, R., Bovik, A. C., & Cormack, L. K. (2010). Study of subjective and objective quality assessment of video. IEEE Transactions on Image Processing, 19(6), 1427–1441.

    Article  MathSciNet  Google Scholar 

  • Seufert, M., Egger, S., Slanina, M., Zinner, T., Hoßfeld, T., & Tran-Gia, P. (2014). A survey on quality of experience of HTTP adaptive streaming. IEEE Communications Surveys and Tutorials, 17(1), 469–492.

    Article  Google Scholar 

  • Siahaan, E., Hanjalic, A., & Redi, J. A. (2018). Semantic-aware blind image quality assessment. Signal Processing: Image Communication, 60, 237–252.

    Google Scholar 

  • Sinno, Z., & Bovik, A. C. (2019a). Large scale study of perceptual video quality. IEEE Transactions on Image Processing, 28(2), 612–627.

    Article  MathSciNet  Google Scholar 

  • Sinno, Z., & Bovik, AC. (2019b). Spatio-temporal measures of naturalness. In IEEE international conference on image processing (ICIP), pp. 1750–1754.

  • Triantaphillidou, S., Allen, E., & Jacobson, R. (2007). Image quality comparison between JPEG and JPEG2000. II. Scene dependency, scene analysis, and classification. Journal of Imaging Science and Technology, 51(3), 259–270.

    Article  Google Scholar 

  • Varga, D. (2019). No-reference video quality assessment based on the temporal pooling of deep features. Neural Processing Letters, 50, 2595–2608.

    Article  Google Scholar 

  • Varga, D., & Szirányi, T. (2019). No-reference video quality assessment via pretrained CNN and LSTM networks. Signal, Image and Video Processing, 13, 1569–1576.

    Article  Google Scholar 

  • VQEG. (2000). Final report from the Video Quality Experts Group on the validation of objective models of video quality assessment. https://www.its.bldrdoc.gov/media/8212/frtv_phase1_final_report.doc.

  • Wang, H., Katsavounidis, I., Zhou, J., Park, J., Lei, S., Zhou, X., et al. (2017). VideoSet: A large-scale compressed video quality dataset based on JND measurement. Journal of Visual Communication and Image Representation, 46, 292–302.

    Article  Google Scholar 

  • Wang, Y., Jiang, T., Ma, S., & Gao, W. (2012). Novel spatio-temporal structural information based video quality metric. IEEE Transactions on Circuits and Systems for Video Technology, 22(7), 989–998.

    Article  Google Scholar 

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004a). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  • Wang, Z., Lu, L., & Bovik, A. C. (2004b). Video quality assessment based on structural distortion measurement. Signal Processing: Image Communication, 19(2), 121–132.

    Google Scholar 

  • Xu, J., Ye, P., Liu, Y., & Doermann, D. (2014). No-reference video quality assessment via feature learning. In IEEE international conference on image processing (ICIP), pp. 491–495.

  • Yan, P., & Mou, X. (2019). No-reference video quality assessment based on spatiotemporal slice images and deep convolutional neural networks. In Proc. SPIE 11187, Optoelectronic Imaging and Multimedia Technology VI, pp. 74–83.

  • Yang D, Peltoketo VT, Kamarainen JK (2019) CNN-based cross-dataset no-reference image quality assessment. In ieee international conference on computer vision workshop (ICCVW), pp. 3913–3921

  • Ye, P., Kumar, J., Kang, L., & Doermann, D. (2012). Unsupervised feature learning framework for no-reference image quality assessment. In IEEE conference on computer vision and pattern recognition (CVPR), pp. 1098–1105.

  • You, J., & Korhonen, J. (2019). Deep neural networks for no-reference video quality assessment. In IEEE international conference on image processing (ICIP), pp. 2349–2353.

  • You, J., Ebrahimi, T., & Perkis, A. (2014). Attention driven foveated video quality assessment. IEEE Transactions on Image Processing, 23(1), 200–213.

    Article  MathSciNet  Google Scholar 

  • Zhang, L., Shen, Y., & Li, H. (2014). VSI: A visual saliency-induced index for perceptual image quality assessment. IEEE Transactions on Image Processing, 23(10), 4270–4281.

    Article  MathSciNet  Google Scholar 

  • Zhang, R., Isola, P., Efros, AA., Shechtman, E., & Wang, O. (2018). The unreasonable effectiveness of deep features as a perceptual metric. In IEEE conference on computer vision and pattern recognition (CVPR), pp. 586–595.

  • Zhang, W., & Liu, H. (2017). Study of saliency in objective video quality assessment. IEEE Transactions on Image Processing, 26(3), 1275–1288.

    Article  MathSciNet  Google Scholar 

  • Zhang, W., Liu, Y., Dong, C., & Qiao, Y. (2019a). RankSRGAN: Generative adversarial networks with ranker for image super-resolution. In IEEE international conference on computer vision (ICCV), pp. 3096–3105.

  • Zhang, W., Ma, K., & Yang, X. (2019b). Learning to blindly assess image quality in the laboratory and wild. arXiv preprint arXiv:1907.00516.

  • Zhang, Y., Gao, X., He, L., Lu, W., & He, R. (2019c). Blind video quality assessment with weakly supervised learning and resampling strategy. IEEE Transactions on Circuits and Systems for Video Technology, 29(8), 2244–2255.

    Article  Google Scholar 

  • Zhang, Y., Gao, X., He, L., Lu, W., & He, R. (2020). Objective video quality assessment combining transfer learning with CNN. IEEE Transactions on Neural Networks and Learning Systems, 31(8), 2716–2730.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Natural Science Foundation of China under contracts 61572042, 61520106004, and 61527804. This work was also supported in part by National Key R&D Program of China (2018YFB1403900). We acknowledge the High-Performance Computing Platform of Peking University for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Jiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Mei Chen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Jiang, T. & Jiang, M. Unified Quality Assessment of in-the-Wild Videos with Mixed Datasets Training. Int J Comput Vis 129, 1238–1257 (2021). https://doi.org/10.1007/s11263-020-01408-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-020-01408-w

Keywords

Navigation