Skip to main content
Log in

Low-Complexity Belief Propagation Detection for Correlated Large-Scale MIMO Systems

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

In this paper, belief propagation (BP) detection in real domain for large-scale multiple-in multiple-out (MIMO) systems is proposed. The mathematical analysis of message updating rules for independent identically distributed (i.i.d.) and correlated fading MIMO channels are given in detail. The damped BP with damping on the a priori probability vector is employed to improve the performance for the uplink large-scale MIMO systems with correlation among transmitting antennas or loading factor ρ = 1. Based on the convergence analysis, the method of selecting message damping factor δ is presented also. In addition, the adaptive message updating for BP detection is first proposed to provide a good trade-off between performance and complexity. Simulation results have shown that, for 16 × 16 MIMO with quadrature phase shift keying (QPSK) modulation, this approach can show 1 dB performance improvement at BER of 10−2, compared to complex domain single-edge based BP (SE-BP). For 8 × 32 MIMO with correlation among transmitting and receiving antennas, where 16-Quadrature Amplitude Modulation (16-QAM) is employed, simulation results have shown that the proposed adaptive BP detection achieves a complexity reduction of 50% compared to the general BP detection with negligible performance loss. For i.i.d. and correlated fading channels with various antennas configurations, advantages of the proposed approach over existing BP detections as well as MMSE approach have been demonstrated by thorough simulations. Hence, the proposed BP detection is suitable for large-scale MIMO systems, especially for those with high-order modulations. Furthermore, the adaptive BP detection together with message damping is expected to be a good choice for low complexity detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Fukuda, W., Abiko, T., Nishimura, T., & et al. (2013). Low-complexity detection based on belief propagation in a massive MIMO system. In Proceedings of IEEE vehicular technology conference spring (VTC-spring) (pp. 1–5). Germany: Dresden.

  2. Hansen, M., Hassibi, B., Dimakis, A.G., & Xu, W. (2009). Near-optimal detection in MIMO systems using Gibbs sampling. In Proceedings of IEEE international communications conference (ICC) (pp. 1–6). Hawaii: Honolulu.

  3. Haroun, A., Nour, C.A., Arzel, M., & et al. (2014). Symbol-based BP detection for MIMO systems associated with non-binary LDPC codes. In Proceedings of IEEE wireless commun. and networking conf. (WCNC) (pp. 212–217). Turkey: Istanbul.

  4. Haykin, S., Sellathurai, M., de Jong, Y., & Willink, T. (2004). Turbo-MIMO for wireless communications. IEEE Commun. Mag., 42(10), 48–53.

    Article  Google Scholar 

  5. Heskes, T. (2010). On the uniqueness of loopy belief propagation fixed points. Neural Comput., 16(11), 2379–2413.

    Article  MATH  Google Scholar 

  6. Ju, C., Ma, J., Tian, C., & He, G. (2012). VLSI Implementation of an 855 Mbps high performance soft-output K-Best MIMO detector. In Proceedings of IEEE international symposium on circuits and systems (ISCAS) (pp. 2849–2852). Korea: Seoul.

  7. Lee, J., Han, J.K., & Zhang, J. (2009). MIMO Technologies in 3GPP LTE and LTE-advanced. EURASIP J. Wirel. Commun. Netw., 2009(3), 1–10.

    Google Scholar 

  8. Long, F., Lv, T., Cao, R., & Gao, H. (2011). Single edge based belief propagation algorithms for MIMO detection. In Proceedings of IEEE sarnoff symposium (pp. 1–5). Princeton: USA.

  9. Marzetta, T.L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun., 9(11), 3590–3600.

    Article  Google Scholar 

  10. Mohammed, S.K., Chockalingam, A., & Rajan, B.S. (2008). A low-complexity near-ML performance achieving algorithm for large MIMO detection. In Proceedings of IEEE intl. symposium on infor. theory (ISIT) (pp. 2012–2016). Canada: Toronto.

  11. Mooij, J.M., & Kappen, H.J. (2007). Sufficient conditions for convergence of the sum-product algorithm. IEEE Trans. Inf. Theory, 53(12), 4422–4437.

    Article  MathSciNet  MATH  Google Scholar 

  12. Narasimhan, T.L. (2014). A.chockalingam: Detection and decoding in large-scale MIMO systems: a non-binary belief propagation approach. In Proceedings of IEEE vechicular technology conference spring (VTC-spring) (pp. 1–5). Korea: Seoul.

  13. Pefkianakis, I., Suk-Bok, L., & Songwu, L. (2013). Towards MIMO-aware 802.11n rate adaptation. IEEE/ACM Trans. Netw., 21(3), 692–705.

    Article  Google Scholar 

  14. Proakis, J.G. (2000). Digital communication, 4th edn. New York: McGraw Hill.

    Google Scholar 

  15. Rusek, F., Persson, D., Lau, B.K., Larsson, E., Marzetta, T., & et al. (2013). Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag., 30(1), 40–60.

    Article  Google Scholar 

  16. Som, P., Datta, T., Chockalingam, A., & Rajan, B.S. (2010). Improved large-MIMO detection based on damped belief propagation. In Proceedings of IEEE international information theory workshop (ITW) (pp. 1–5): Cairo.

  17. Som, P., Datta, T., Chockalingam, A., & Rajan, S.S. (2010). Improved large-MIMO detection based on damped belief propagation. In Proceedings of IEEE info. theory workshop (ITW) (pp. 1–5). Egypt: Cairo.

  18. Som, P., Datta, T., Srinidhi, N., & et al. (2011). Low-complexity detection in large-dimension MIMO-ISI channels using graphical models. IEEE Signal Process. Mag., 5(8), 1932–4553.

    Google Scholar 

  19. Srinidhi, N., Mohammed, S.K., Chockalingam, A., & et al. (2009). Low-complexity near-ML decoding of large non-orthogonal STBCs using reactive tabu search. In Proceedings of IEEE intl. symposium on info. theory (ISIT) (pp. 1993–1997). Korea: Seoul.

  20. Wu, M., Bei, Y., Vosoughi, A., & et al. (2013). Approximate matrix inversion for high-throughput data detection in the large-scale MIMO uplink. In Proceedings of IEEE intl. symp. on circuits and systems (ISCAS) (pp. 2155–2158). China: Beijing.

  21. Wubben, D., Seethaler, D., Jalden, J., & Matz, G. (2011). Lattice reduction. IEEE Signal Process. Mag., 28(3), 70–91.

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by International Science & Technology Cooperation Program of China under grant 2014DFA11640, Huawei HIRP Flagship under grant YB201504, NSFC under grant 61501116, Jiangsu Provincial NSF under grant BK20140636, State Key Laboratory of ASIC & System under grant 2016KF007, ICRI for MNC, Student Research Training Program of SEU, the Fundamental Research Funds for the Central Universities under grants 3204004202 and 3204005101, the Research Fund of National Mobile Communications Research Laboratory, SEU under grant 2014B02, and the Project Sponsored by the SRF for the Returned Overseas Chinese Scholars of State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Zhang.

Appendices

Appendix A: Proof of Theorem 1

Assume r and \(\mathbf {H}=(\mathbf {h}_{1}^{T},\ldots ,\mathbf {h}_{2N}^{T})^{T}\) are given. Define

$$\left\{ \begin{array}{l} {{\mathbf{x}}^{2M\backslash i}} = ({x_{1}},\ldots,{x_{i - 1}},{x_{i + 1}},\ldots,{x_{2M}}),\\ {\mathbf{x}}_{0}^{2M\backslash i} = \{{{x}_{1}} = {s_{0}},\ldots,{x_{i - 1}} = {s_{0}},{x_{i + 1}} = {s_{0}},\ldots,{x_{2M}}={s_{0}}\}. \end{array} \right. $$

For the l-th iteration in BP detection, \(\beta _{j,i}^{(l)}({s_{k}})\) can be calculated as follows:

$$\begin{array}{@{}rcl@{}} \beta_{j,i}^{(l)}({s_{k}})&=& \ln \frac{{{p^{(l)}}({x_{i}} = {s_{k}}|{r_{j}},\mathbf{H})}}{{{p^{(l)}}({x_{i}} = {s_{0}}|{r_{j}},\mathbf{H})}}\\ &=&\ln \frac{{{\sum}_{{\textbf{x}}:{x_{i}} = {s_{k}}} {{p^{(l)}}({r_{j}}|\mathbf{x},\mathbf{H}){p^{(l - 1)}}({{\textbf{x}}^{2M\backslash i}})} }}{{{\sum}_{{\textbf{x}}:{x_{i}} = {s_{0}}} {{p^{(l)}}({r_{j}}|\mathbf{x},\mathbf{H}){p^{(l - 1)}}({{\textbf{x}}^{2M\backslash i}})}}}\\ &=& \ln\frac{\sum\limits_{{\textbf{x}}:{x_{i}} = {s_{k}}}{p^{(l)}}\left( {r_{j}}|\mathbf{x},\mathbf{H}\right) \exp\underset{t\neq i}{\sum\limits_{\mathbb{T}:x_{t}=s_{k}}} \alpha_{t,j}^{(l-1)} (s_{k})}{\sum\limits_{{\textbf{x}}:{x_{i}} = {s_{0}}}{p^{(l)}}\left( {r_{j}}|\mathbf{x}, \mathbf{H}\right) \exp\underset{t\neq i}{\sum\limits_{\mathbb{T}:x_{t} = s_{0}}}\alpha_{t,j}^{(l-1)}(s_{k})}. \end{array} $$

Combining Eq. 19 with the iterative process, we have

$$p^{(l)}({r_{j}}|\mathbf{x},\mathbf{H})=\frac{1}{{\sqrt {2\pi } {\sigma_{{z_{j,i}}}^{(l-1)}}}}\exp \left\{\frac{{({r_{j}} - {\mu_{{z_{j,i}}}^{(l-1)}} - {h_{j,i}}{x_{i}})^{2}}}{{2(\sigma_{{z_{j,i}}}^{2})^{(l-1)}}}\right\}. $$

Then \(\beta _{j,i}^{(l)}({s_{k}})\) could be rewritten as follows:

$$\begin{array}{@{}rcl@{}} \beta_{j,i}^{(l)}({s_{k}})= \ln \left\{ \frac{\sum\limits_{{\textbf{x}}:{x_{i}} = {s_{k}}}\exp\left( -\frac{\left( r_{j}- \mu_{z_{j,i}}^{(l-1)}-h_{j,i}x_{i}\right)^{2}}{2(\sigma_{z_{j,i}}^{2})^{(l-1)}}\right)}{\sum\limits_{{\textbf{x}}: {x_{i}} ={s_{0}}}\exp\left( -\frac{\left( r_{j}-\mu_{z_{j,i}}^{(l-1)}-h_{j,i}x_{i}\right)^{2}}{2(\sigma_{z_{j, i}}^{2})^{(l-1)}}\right)}\cdot \right.\\ \left.\frac{\exp\sum\limits_{\mathbb{T}:x_{t}=s_{k} t\neq i} \alpha_{t,j}^{(l-1)} (s_{k})}{\exp\sum\limits_{\mathbb{T}:x_{t}=s_{0} t\neq i}\alpha_{t,j}^{(l-1)}(s_{k})}\right\} \end{array} $$

Employing Jacobi logarithm, we have

$$\begin{array}{@{}rcl@{}} \beta_{j,i}^{(l)}(\mathbf{s}_{k}) & \approx &\underset{{\textbf{x}}:{x_{i}} = {s_{k}}}{\max}\left( \underset{t\neq i}{\sum\limits_{\mathbb{T}:x_{t}=s_{k}}}\alpha_{t,j}^{(l - 1)}(s_{k}) - \frac{\left( r_{j} - \mu_{z_{j,i}}^{(l - 1)} - h_{j,i}x_{i}\right)^{2}}{2(\sigma_{z_{j,i}}^{2})^{(l - 1)}}\right)\\ &&- \underset{{\textbf{x}}:{x_{i}} = {s_{0}}} {\max}\left( \underset{t\neq i}{\sum\limits_{\mathbb{T}:x_{t} = s_{0}}}\alpha_{t,j}^{(l - 1)}(s_{k}) - \frac{\left( r_{j} - \mu_{z_{j,i}}^{(l - 1)} - h_{j,i}x_{i}\right)^{2}}{2(\sigma_{z_{j,i}}^{2})^{(l - 1)}}\right). \end{array} $$

Appendix B: Proof of Lemma 1

Giving that

$$\left\{ \begin{aligned} \mathbf{H}&=(\mathbf{H}_{1},\ldots,\mathbf{H}_{2M})= (\mathbf{h}_{1}^{T},\ldots,\mathbf{h}_{2N}^{T})^{T},\\ \mathbf{H}_{w}&=(\mathbf{H}_{w,1},\ldots,\mathbf{H}_{w,2M})= (\mathbf{h}_{w,1}^{T},\ldots,\mathbf{h}_{w,2N}^{T})^{T}, \end{aligned} \right. $$

together with the i.i.d. Gaussian matrix H w . According to Eq. 6, we have:

$$\mathbf{H}=\mathbf{R}_{r}^{1/2}\mathbf{H}_{w}\Sigma_{t}^{1/2} \Rightarrow\mathbf{H}_{k}=\sigma_{t,k}^{1/2} (\mathbf{R}_{r}^{1/2})\mathbf{H}_{w,k}. $$

Since H k is the linear combination of the entries from i.i.d. column vector H w,k , the column vectors {H k , 1 ≤ k ≤ 2M} are independent and Gaussian. According to Eq. 7, we have:

$$\mathbf{H}^{T}=(\mathbf{R}_{t}^{1/2})^{T}\mathbf{H}_{w}^{T}(\Sigma_{r}^{1/2})^{T}\Rightarrow\mathbf{h}_{m}= \sigma_{r,m}^{1/2}\mathbf{h}_{w,m}(\mathbf{R}_{t}^{1/2}). $$

Similarly, the row vectors {h m , 1 ≤ m ≤ 2N} are also independent. However the entries {h m,k , 1 ≤ m ≤ 2N} of H k are dependent. Therefore, column vectors of H are not independent now. Similarly, column vectors of H with correlation among both Tx and Rx antennas are dependent also.

Appendix C: Proof of Theorem 2

According to Eq. 2, we have

$$\mathbf{r}=\sum\limits_{k=1}^{2M}\mathbf{H}_{k}x_{k}+\mathbf{n}=\mathbf{H}_{i}x_{i}+\sum\limits_{k=1,k\neq i}^{2M}\mathbf{H}_{k}x_{k}+\mathbf{n}. $$

The column vectors {H k , 1 ≤ k ≤ 2M} are independent and Gaussian by Theorem 2. Together with the independent transmitted symbols s k and AWGN vector n, the received vector r are independent and Gaussian.

Given H, x i = s, and \(\mathbf {r}\sim \mathcal {N}\left (\mathbf {m}_{\mathbf {r}}, \Sigma _{\mathbf {r}}\right )\), where

$$\left\{ \begin{aligned} \mathbf{m}_{\mathbf{r}}&=(m_{1}, m_{2},\ldots,m_{2N}),\\ \Sigma_{\mathbf{r}}&=\mathbb{E}\{(\mathbf{r}-\mathbf{m}_{\mathbf{r}})(\mathbf{r}-\mathbf{m}_{\mathbf{r}})^{T}\} =\text{diag}(\sigma_{1},\ldots,\sigma_{2N}), \end{aligned} \right. $$

we can further acquire that for 1 ≤ j ≤ 2N:

$$\left\{ \begin{aligned} m_{j}&=\mathbb{E}\{r_{j}\}=h_{j,i}s+\sum\limits_{k=1,k\neq i}h_{j,k}\mathbb{E}\{s_{k}\},\\ {\sigma_{j}^{2}}&=\mathbb{E}\{(r_{j}-m_{j})^{2}\} =\sum\limits_{k=1,k\neq i}^{2N}h_{j,k}^{2}\text{Var}\{s_{k}\}+\sigma^{2}. \end{aligned} \right. $$

The likelihood probability can be derived as follows:

$$\begin{array}{@{}rcl@{}} p(\mathbf{r}|x_{i})& = &\prod\limits_{j=1}^{2N}\frac{1}{\sqrt{2\pi}\sigma_{j}}\exp\left\{ - \sum\limits_{j=1}^{2N}\frac{(r_{j}-m_{j})^{2}}{{\sigma_{j}^{2}}}\right\}\\ & = &\prod\limits_{j=1}^{2N}\frac{1}{\sqrt{2\pi}\sigma_{z_{j,i}}}\exp\left\{ - \sum\limits_{j=1}^{2N}\frac{(r_{j}-\mu_{z_{j,i}}-h_{j,i}s)^{2}}{\sigma_{z_{j,i}}^{2}}\right\}, \end{array} $$

where \(\mu _{z_{j,i}}\) and \(\sigma _{z_{j,i}}\) are given by Eq. 18. Compared with Eq. 19, we have the following formula

$$p(\mathbf{r}|x_{i} = s,\mathbf{H}) = \prod\limits_{j=1}^{2N}p(r_{j}|\mathbf{H},x_{i} = s)\propto\prod\limits_{j = 1}^{2N}p(x_{i} = s|r_{j},\mathbf{H}). $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Song, W., Zhang, S. et al. Low-Complexity Belief Propagation Detection for Correlated Large-Scale MIMO Systems. J Sign Process Syst 90, 585–599 (2018). https://doi.org/10.1007/s11265-017-1273-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-017-1273-3

Keywords

Navigation