Skip to main content
Log in

Value of Irrigation Water in Guadalquivir Basin (Spain) by Residual Value Method

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

This paper presents an application of residual value techniques to the economic analysis of irrigation water at the basin level for the Guadalquivir River (Southern Spain). The methodology is simple; the results are robust and consistent with alternative method findings. The average residual value in the basin is 0.31 €/m3 and according to the to Residual Value Method, the distribution of total Gross Value Added (GVA) of irrigated land is distributed between the different factors of production as follows: (i) water, 62% of GVA; (ii) land, 20% GVA (from rain-fed productivity), (iii) return to man-made capital, 5% GVA; and finally (iv) the pair ‘management + family-labour’ gets 13% of total irrigation GVA. The paper illustrates the use of this method for the whole basin and it shows that it may offer promise for supporting sustainable water management at the basin (or the local) scale. It may be used for the implementation of the Water Framework Directive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements irrigation and drainage paper 56. FAO—Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • ACUAVIR-Confederación Hidrográfica del Guadalquivir (2005) Informe final superficie de los cultivos de regadío y sus necesidades de riego. [In Spanish]. Available at: http://www.chguadalquivir.es/export/sites/default/portalchg/servicios/estudiosTecnicos/ficheros/Informe_Final-Regadios_2004.pdf

  • Bate RN, Dubourg WR (1997) Net-back analysis of irrigation water demand in East-Anglia. J Environ Manag 49:311–322

    Article  Google Scholar 

  • Berbel J, Gómez-Limón JA (2000) The impact of water-pricing policy in Spain: an analysis of three irrigated areas. Agric Water Manag 43:219–238

    Article  Google Scholar 

  • Berbel J, Gutiérrez C (eds) (2004) Sustainability of European irrigated agriculture under Water Framework Directive and Agenda 2000. EUR 21220. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Berbel J, Mesa P (2007) Valoración del agua de riego por el método de precios quasi-hedónicos: Aplicación al Guadalquivir. Economía Agraria y Recursos Naturales 14:127–144 [In Spanish]

    Google Scholar 

  • Berbel J, Viaggi D, Manos B (2009) Estimating demand for irrigation water in European Mediterranean countries through MCDM models. Water Policy 11(3):348–361. doi:10.2166/wp.2009.043

    Article  Google Scholar 

  • Berbel J, Martin-Ortega J, Mesa P (2010) A cost-effectiveness analysis of water-saving measures for the Water Framework Directive: the case of the Guadalquivir River basin in Southern Spain. Water Resour Manag. doi:10.1007/s11269-010-9717-6

    Google Scholar 

  • Brown TC, Bergstrom JC, Loomis JC (2007) Defining, valuing and providing ecosystem goods and services. Nat Resour J 47(2):329–376

    Google Scholar 

  • Calatrava Leyva J, Sayadi S (2005) Economic valuation of water and “willingness to pay” analysis with respect to tropical fruit production in southeastern Spain. Span J Agric Res 3(1):25–33

    Google Scholar 

  • Chaudhry MA, Young RA (1989) Valuing irrigation water in Punjab Province, Pakistan: a linear programming approach. J Am Water Resour Assoc 25:1055–1061. doi:10.1111/j.1752-1688.1989.tb05421.x

    Article  Google Scholar 

  • Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. Official Journal (OJ L 327) 22 Dec

  • Doorenbos J, Kassam AH (1979) Yield response to water. FAO Irrigation and Drainage. Paper 33. Rome

  • English M (1990) Deficit irrigation. I: analytical framework. J Irrig Drain Eng 116(3):399–412. doi:10.1061/(ASCE)0733-9437(1990)116:3(399)

    Article  Google Scholar 

  • Esmaeili A, Vazirzadeh S (2009) Water pricing for agricultural production in the South of Iran. Water Resour Manag 23(5):957–964. doi:10.1007/s11269-008-9308-y

    Article  Google Scholar 

  • Fereres E, Soriano MA (2007) Deficit irrigation for reducing agricultural water use. J Exp Bot 58(2):147–159. doi:10.1093/jxb/erl165

    Article  Google Scholar 

  • Gómez-Limón JA, Berbel J (2000) Multicriteria analysis of derived water demand functions: a Spanish case study. Agric Systems 63:49–72

    Article  Google Scholar 

  • Gómez-Limón JA, Berbel J, Arriaza M (2007) MCDM farm system analysis for public management of irrigated agriculture. In: Weintraub A, Bjorndal T, Epstein R, Romero C (eds) Handbook on operations research in natural resources. Ed. Kluwer: 93–114. doi:10.1007/978-0-387-71815-6_6

  • Grimes A, Aitken A (2008) Water, water somewhere: the value of water in a drought-prone farming region. MOTU Working Paper 08-10, Motu Economic and Public Policy Research

  • Hanemann WH (2006) The economic conception of water. In: Rogers PP, Llamas MR, Martínez-Cortina L (eds) Water crisis: myth or reality? Taylor & Francis plc, London

    Google Scholar 

  • Hayashi K (2000) Multicriteria analysis for agricultural resource management: a critical survey and future perspectives. Eur J Oper Res 122:486–500. doi:10.1016/S0377-2217(99)00249-0

    Article  Google Scholar 

  • Hazell BR, Norton RD (1986) Mathematical programming for economic analysis in agriculture. Macmillan Publishing Co, New York. doi:10.1002/bimj.4710310805

    Google Scholar 

  • Heal GM, Barbier EB, Boyle KJ, Covich AP, Gloss SP, Hershner CH et al (2005) Valuing ecosystem services: toward better environmental decision-making. National Academy Press, Washington

    Google Scholar 

  • Hexem RW, Heady EO (1978) Water production functions for irrigated agriculture. Iowa State University Press, Ames. doi:10.1016/0378-3774(77)90030-0

    Google Scholar 

  • JRC (2007) Experiences in analysis of pressures and impacts from agriculture on water resources and developing a related programme of measures. Report of the Pilot River Basin Group on Agriculture: Phase II, Period September 2005–December 2006. Report EUR 22808 EN, Office for Official Publications of the European Communities

  • Lange GM (2006) Case studies of water valuation in Namibia’s commercial farming areas. In: Lange GM, Hassam R (eds) The economics of water management in Southern Africa: an environmental accounting approach. Edward Elgar Publishing, Chelthenham, pp 237–255

    Google Scholar 

  • Mesa-Jurado MA, Berbel J, Orgaz F (2010) Estimating marginal value of water for irrigated olive grove with the production function method. Span J Agric Res 8(S2), 197–206

    Google Scholar 

  • Ministerio de Medio Ambiente-Confederación Hidrográfica del Guadalquivir (2006) Plan Especial Sequía. 281 pp. www.mma.es/secciones/acm/aguas_continent_zonas_asoc/ons/planes_sequia_isas

  • Moran D, Dann S (2008) The economic value of water use: implications for implementing the Water Framework Directive in Scotland. J Environ Manag 87:484–496. doi:10.1016/j.jenvman.2007.01.043

    Article  Google Scholar 

  • Romero C, Rehman T (2003) Multiple criteria analysis for agricultural decisions. Elsevier Science Publishers, Amsterdam. doi:10.1016/S0921-8009(04)00132-6

    Google Scholar 

  • Scheierling SM, Young RA, Cardon GE (2004) Determining the price-responsiveness of demands for irrigation water deliveries versus consumptive use. J Agric and Resour Econ 29(2):328–345

    Google Scholar 

  • Speelman S, Farolfi S, Perret S, D’haese L, D’haese M (2008) Irrigation water value at small-scale schemes: evidence from the North West Province, South Africa. Intern J Water Resour Development 24(4):621–633. doi:10.1080/07900620802224536

    Article  Google Scholar 

  • Speelman S, Frija A, Perret S, D’Haese M, Farolfi S, D’Haese L (2009) Variability in smallholder’s irrigation water values: study in North-West province, South Africa. Irrig Drain. doi:10.1002/ird.539

    Google Scholar 

  • Strosser P, Roussard J, Grandmougin B, Kossida M, Kyriazopoulou I, Berbel J, Kolberg S, Rodríguez-Díaz JA, Montesinos P, Joyce J, Dworak T, Berglund M, Laaser C (2007) EU water saving potential. ENV.D.2/ETU/2007/0001r. Final report. 247. http://ec.europa.eu/environment/water/quantity/scarcity_en.htm

  • Vaux HJ, Pruitt WO (1983) Crop-water production functions. In: Hillel D (ed) Advances in irrigation. Academic Press, New York, pp 61–97

    Google Scholar 

  • WATECO (2003) Economics and the environment. The implementation challenge of the Water Framework Directive. Accompanying Documents to the Guidance, European Commission, Brussels

  • Young RA (2005) Determining the economic value of water: concepts and methods. Resources for the Future, Washington. doi:10.1007/s10640-005-1956-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Berbel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berbel, J., Mesa-Jurado, M.A. & Pistón, J.M. Value of Irrigation Water in Guadalquivir Basin (Spain) by Residual Value Method. Water Resour Manage 25, 1565–1579 (2011). https://doi.org/10.1007/s11269-010-9761-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-010-9761-2

Keywords

Navigation