Skip to main content
Log in

Reporting of Stream-Aquifer Flow Distribution at the Regional Scale with a Distributed Process-Based Model

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Groundwater withdrawals can reduce aquifer-to-stream flow and induce stream-to-aquifer flow. These effects involve potential threats over surface water and groundwater quantity and quality. As a result, the description of stream-aquifer flow in space and time is of high interest for water managers. In this study, the EauDyssée platform, an integrated groundwater/surface water model is extended to provide the distribution of stream-aquifer flow at the regional scale. The methodology is implemented over long periods (17 years) in the Seine river basin (76 375 km2, France) with a 6 481 km long simulated river network. The study scale is compatible with the scale of interest of water authorities, which is often larger than study scales of research projects. Net and gross stream-aquifer exchange flow are computed at the daily time step over the whole river network at a resolution of 1 km. Simulation results highlight that a major proportion of the main stream network (82 %) is supplied by groundwater. Groundwater withdrawals induce a reduction of net aquifer-to-stream flow (−19 %) at the basin scale and flow reversals in the vicinity of pumping locations. Such an integrated model provided at the appropriate regional scale is an essential tool provided to water managers for the implementation of the EU Water Framework Directive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AESN, DRIEE (2013) Etat des lieux du Bassin de la Seine et des cours d’eau côtiers normands (Strategic environmental assessment of Seine and Normandy coastal rivers district). Seine-Normandy Water Agency and Regional office of the Ministry of Environment

  • Barthel R, Reichenau TG, Krimly T, Dabbert S, Schneider K, Mauser W (2012) Integrated modeling of global change impacts on agriculture and groundwater resources. Water Resour Manag 26(7):1929– 1951

    Article  Google Scholar 

  • Bencala K, Gooseff M, Kimball B (2011) Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections. Water Resour Res 47:W00H03. doi:10.1029/2010WR010066

    Article  Google Scholar 

  • Bertrand G, Goldscheider N, Gobat JM, Hunkeler D (2012) Review: From multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems. Hydrogeol J 20:5–25. doi:10.1007/513s10040-011-0791-5

    Article  Google Scholar 

  • Billen G, Garnier J, Mouchel JM, Silvestre M (2007) The Seine system: Introduction to a multidisciplinary approach of the functioning of a regional river system. Sci Total Environ 375(1):1–12. doi:10.1016/j.scitotenv.2006.12.001

    Article  Google Scholar 

  • Borowski I, Hare M (2007) Exploring the gap between water managers and researchers: difficulties of model-based tools to support practical water management. Water Resour Manag 21(7):1049–1074

    Article  Google Scholar 

  • Brunner P, Simmons CT (2012) HydroGeoSphere: a fully integrated, physically based hydrological model. Ground Water 50(2):170–176. doi:10.1111/522j.1745-6584.2011.00882.x

    Article  Google Scholar 

  • Brunner P, Simmons C, Cook P, Therrien R (2010) Modeling surface water-groundwater interaction with MODFLOW: some considerations. Ground Water 48(2):174–180. doi:10.1111/j.1745-6584.2009.00644.x

    Article  Google Scholar 

  • Chow V (1959) Open-channel hydraulics, McGraw-Hill, chap Part 1. Basic Principles

  • Dahl M, Nilsson B, Langhoff J, Refsgaard J (2007) Review of classification systems and new multi-scale typology of groundwater-surface water interaction. J Hydrol 344(1-2):1–16. doi:10.1016/j.jhydrol.2007.06.027

    Article  Google Scholar 

  • David C, Habets F, Maidment D, Yang ZL (2011) RAPID applied to the SIM-France model. Hydrol Process 25(22):3412–3425. doi:10.1002/hyp.5338070

    Article  Google Scholar 

  • de Fouquet C (2012) Environmental statistics revisited: Is the mean reliable?. Envi Sci Tech 46(4):1964–1970. doi:10.1021/es2024143

    Article  Google Scholar 

  • de Marsily G (1986) Quantitative hydrogeology: groundwater hydrology for engineers. Academic Press, Inc., Orlando Florida

    Google Scholar 

  • de Marsily G (2008) Eau, changements climatiques, alimentation et évolution démographique. Revue des Sciences de l’Eau/Journal of Water Science 21(2):111–128

    Google Scholar 

  • Deschesnes J, Villeneuve JP, Ledoux E, Girard G (1985) Modeling the hydrologic cycle: the MC model. Nordic Hydrol 16(5):273–290

    Google Scholar 

  • Ebel BA, Mirus BB, Heppner CS, VanderKwaak JE, Loague K (2009) First-order exchange coefficient coupling for simulating surface water–groundwater interactions: Parameter sensitivity and consistency with a physics-based approach. Hydrol Process 23(13):1949–1959. doi:10.1002/hyp.7279

    Article  Google Scholar 

  • Ellis P, Mackay R, Rivett M (2007) Quantifying urban river-aquifer fluid exchange processes: A multi-scale problem. J Contam Hydrol 91(1-2):58–80. doi:10.1016/j.jconhyd.2006.08.014

    Article  Google Scholar 

  • Engeler I, Franssen HH, Müller R, Stauffer F (2011) The importance of coupled modelling of variably saturated groundwater flow–heat transport for assessing river – aquifer interactions. J Hydrol 397(3–4):295–305. doi:10.1016/j.jhydrol.2010.12.007

    Article  Google Scholar 

  • Etchevers P, Golaz C, Habets F (2001) Simulation of the water budget and the river flows of the Rhone basin from 1981 to 1994. J Hydrol 244:60–85. doi:10.1016/S0022-1694(01)00332-8

    Article  Google Scholar 

  • Fleckenstein J, Niswonger R, Fogg G (2006) River-aquifer interactions, geologic heterogeneity, and low-flow management. Ground water 44(6):837–852. doi:10.1111/j.1745-6584.2006.00190.x

    Article  Google Scholar 

  • Flipo N, Mouhri A, Labarthe B, Biancamaria S, Rivière, Weill P (2014) Continental hydrosystem modelling: the concept of nested stream-aquifer interfaces. Hydrol Earth Syst Sci 18:3121–3149. doi:10.5194/hess-18-3121-2014

    Article  Google Scholar 

  • Flipo N, Monteil C, Poulin M, de Fouquet C, Krimissa M (2012) Hybrid fitting of a hydrosystem model: Long-term insight into the Beauce aquifer functioning (France). Water Resour Res 48(5):W05509. doi:10.1029/2011WR011092558

    Article  Google Scholar 

  • Frei S, Fleckenstein J, Kollet S, Maxwell R (2009) Patterns and dynamics of river-aquifer exchange with variably-saturated flow using a fully-coupled model. J Hydrol 375:383–393. doi:10.1016/j.jhydrol.2009.06.038

    Article  Google Scholar 

  • Goderniaux P, Brouyère S, Fowler H, Blenkinsop S, Therrien R, Orban P, Dassargues A (2009) Large scale surface-subsurface hydrological model to assess climate change impacts on groundwater reserves. J Hydrol 373(1-2):122–138. doi:10.1016/j.jhydrol.2009.04.017

    Article  Google Scholar 

  • Gomez E, Ledoux E, Viennot P, Mignolet C, Benoît M, Bornerand C, Schott C, Mary B, Billen G, Ducharne A, Brunstein D (2003) Un outil de modélisation intégrée du transfert des nitrates sur un système hydrologique: Application au bassin de la Seine. La Houille Blanche 3-2003:38–45

    Article  Google Scholar 

  • Guillocheau F, Robin C, Allemand P, Bourquin S, Brault N, Dromart G, Friedenberg R, Garcia J, Gaulier J, Gaumet F et al (2000) Meso-Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints. Geodin Acta 13(4):189–245. doi:10.1016/S0985-3111(00)00118-2

    Article  Google Scholar 

  • Habets F, Gascoin S, Korkmaz S, Thiéry D, Zribi M, Amraoui N, Carli M, Ducharne A, Leblois E, Ledoux E, Martin E, Noilhan J, Ottlé C, Viennot P (2010) Multi-model comparison of a major flood in the groundwater-fed basin of the Somme River (France). Hydrol Earth Syst Sc 14:99–117. doi:10.5194/hess-14-99-2010

    Article  Google Scholar 

  • Hantush MS (1965) Wells near streams with semipervious beds. J Geophys Res 70(12):2829–2838. doi:10.1029/JZ070i012p02829

    Article  Google Scholar 

  • Hunt RJ, Strand M, Walker JF (2006) Measuring groundwater–surface water interaction and its effect on wetland stream benthic productivity, Trout Lake watershed, northern Wisconsin, USA. J Hydrol 320(3):370–384. doi:10.1016/j.jhydrol.2005.07.029

    Article  Google Scholar 

  • INSEE (2010). Institut National de la Statistique et des Études Économiques (National Institute of Statistics ans Economic Studies, Ministry of the Economy, Finance, and Industry, France). http://www.insee.fr

  • Jha MK, Chikamori K, Kamii Y, Yamasaki Y (1999) Field investigations for sustainable groundwater utilization in the Konan basin. Water Resour Manag 13(6):443–470

    Article  Google Scholar 

  • Kalbus E, Schmidt C, Molson J, Reinstorf F, Schirmer M (2009) Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge. Hydrol Earth Syst Sc 13:69–77. doi:10.5194/hess-13-69-2009

    Article  Google Scholar 

  • Kikuchi C, Ferré T, Welker J (2012) Spatially telescoping measurements for improved characterization of ground water–surface water interactions. J Hydrol 446:1–12. doi:10.1016/j.jhydrol.2012.04.002

    Article  Google Scholar 

  • Kirk S, Herbert AW (2002) Assessing the impact of groundwater abstractions on river flows. Geol Soc Lond Spec Publ 193(1):211–233. doi:10.1144/GSL.SP.2002.193.01.16

    Article  Google Scholar 

  • Kollet SJ, Maxwell RM (2006) Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour 29:945–958. doi:10.1016/j.advwatres.2005.08.006

    Article  Google Scholar 

  • Korkmaz S, Ledoux E, Önder H (2009) Application of the coupled model to the Somme river basin. J Hydrol 366(1-4):21–34. doi:10.1016/j.jhydrol.2008.12.008

    Article  Google Scholar 

  • Krause S, Bronstert A, Zehe E (2007) Groundwater-surface water interactions in a North German lowland floodplain - Implications for the river discharge dynamics and riparian water balance. J Hydrol 347:404–417. doi:10.1016/j.jhydrol.2007.09.028

    Article  Google Scholar 

  • Krause S, Hannah DM, Fleckenstein JH, Heppell CM, Kaeser D, Pickup R, Pinay G, Robertson AL, Wood PJ (2011) Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology 4(4):481–499. doi:10.1002/eco.176

    Article  Google Scholar 

  • Krause S, Hannah D, Fleckenstein J (2009) Hyporheic hydrology: interactions at the groundwater-surface water interface. Hydrol Process 23:2103–2107. doi:10.1002/hyp.7366

    Article  Google Scholar 

  • Kurtulus B, Flipo N (2012) Hydraulic head interpolation using anfis - Model selection and sensitivity analysis. Computer & Geosci 38(1):43–51. doi:10.1016/j.cageo.2011.04.019

    Article  Google Scholar 

  • Ledoux E, Girard G, de Marsily G, Villeneuve J, Deschenes J (1989) Spatially distributed modeling: conceptual approach, coupling surface water and groundwater. In: Unsaturated flow in hydrologic modeling - theory and practice. NATO ASI Series, vol 275, pp 435–454

  • Ledoux E, Girard G, Villeneuve J (1984) Proposition d’un modèle couplé pour la simulation conjointe des écoulements de surface et des écoulements souterrains sur un bassin hydrologique. La Houille Blanche 1-2:101–120

    Article  Google Scholar 

  • Ledoux E, Gomez E, Monget J, Viavattene C, Viennot P, Ducharne A, Benoit M, Mignolet C, Schott C, Mary B (2007) Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain. Sci Total Environ 375:33–47. doi:10.1016/j.scitotenv.2006.12.002

    Article  Google Scholar 

  • Liggett J, Werner A, Simmons C (2012) Influence of the first-order exchange coefficient on simulation of coupled surface-subsurface flow. J Hydrol 414-415:503–515. doi:10.1016/j.jhydrol.2011.11.028

    Article  Google Scholar 

  • Lin YC, Medina MA Jr (2003) Incorporating transient storage in conjunctive stream-aquifer modeling. Adv Water Resour 26(9):1001 – 1019. doi:10.1016/S0309-1708(03)00081-2

    Article  Google Scholar 

  • Maier H, Dandy G (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Modell Soft 15:101–124. doi:10.1016/S1364-8152(99)00007-9

    Article  Google Scholar 

  • Mas-Pla J, Menció A, Marsiñach A (2013) Basement groundwater as a complementary resource for overexploited stream-connected alluvial aquifers. Water Resour Manag 27(1):293–308

    Article  Google Scholar 

  • Massei N, Laignel B, Deloffre J, Mesquita J, Motelay A, Lafite R, Durand A (2010) Long-term hydrological changes of the Seine River flow (France) and their relation to the North Atlantic Oscillation over the period 1950-2008. Int J Climatol 30(14):2146–2154. doi:10.1002/joc.2022

    Article  Google Scholar 

  • McCallum AM, Andersen MS, Giambastiani B, Kelly BF, Ian Acworth R (2012a) River–aquifer interactions in a semi-arid environment stressed by groundwater abstraction. Hydrol Process 27(7):1072–1085. doi:10.1002/hyp.9229

    Article  Google Scholar 

  • McCallum JL, Cook PG, Berhane D, Rumpf C, McMahon GA (2012b) Quantifying groundwater flows to streams using differential flow gaugings and water chemistry. J Hydrol 416:118–132. doi:10.1016/j.jhydrol.2011.11.040

    Article  Google Scholar 

  • McDonald M, Harbaugh A (1988) A modular three-dimensional finite-difference ground-water flow model, USGS, chap River Package, pp 6–1–6–36

  • Mehl S, Hill MC (2002) Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 25(5):497–511

    Article  Google Scholar 

  • Mehl S, Hill MC (2010) Grid-size dependence of Cauchy boundary conditions used to simulate stream–aquifer interactions. Adv Water Resour 33(4):430–442. doi:10.1016/j.advwatres.2010.01.008

    Article  Google Scholar 

  • Monteil C (2011) Estimation de la contribution des principaux aquifères du bassin-versant de la Loire au fonctionnement hydrologique du fleuve à l’étiage. Ph.D. Thesis, MINES-ParisTech

  • Morel-Seytoux HJ (2009) The turning factor in the estimation of stream-aquifer seepage. Ground Water 47(2):205–212. doi:10.1111/j.1745-6584.2008.00512.x

    Article  Google Scholar 

  • Mouhri A, Flipo N, Rejiba F, de Fouquet C, Bodet L, Kurtulus B, Tallec G, Durand V, Jost A, Ansart P, Goblet P (2013) Designing a multi-scale sampling system of stream–aquifer interfaces in a sedimentary basin. J Hydrol 504:194 – 206. doi:10.1016/j.jhydrol.2013.09.036

    Article  Google Scholar 

  • Nalbantis I, Efstratiadis A, Rozos E, Kopsiafti M, Koutsoyiannis D (2011) Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems. Hydrol Earth Syst Sc 15(3):743–758

    Article  Google Scholar 

  • Panday S, Huyakorn PS (2004) A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Adv Water Resour 27(4):361–382. doi:10.1016/j.advwatres.2004.02.016

    Article  Google Scholar 

  • Pinder G, Jones J (1969) Determination of the groundwater component of peak discharge from the chemistry of total run-off. Water Resour Res 5(2):438–445. doi:10.1029/WR005i002p00438

    Article  Google Scholar 

  • QGIS Development Team (2013) QGIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.osgeo.org

  • Quevauviller P, Balabanis P, Fragakis C, Weydert M, Oliver M, Kaschl A, Arnold G, Kroll A, Galbiati L, Zaldivar JM et al (2005) Science-policy integration needs in support of the implementation of the EU Water Framework Directive. Environ Sci & Policy 8(3):203–211. doi:10.1016/j.envsci.2005.02.003

    Article  Google Scholar 

  • Quintana-Seguí P, Le Moigne P, Durand Y, Martin E, Habets F, Baillon M, Canellas C, Franchisteguy L, Morel S (2008) Analysis of near-surface atmospheric variables: Validation of the SAFRAN analysis over France. J Appl Meteorol Clim 47(1):92–107. doi:10.1175/2007JAMC1636.1

    Article  Google Scholar 

  • Refsgaard J, Sørensen H, Mucha I, Rodak D, Hlavaty Z, Bansky L, Klucovska J, Topolska J, Takac J, Kosc V et al (1998) An integrated model for the Danubian lowland–methodology and applications. Water Resour Manag 12(6):433–465

    Article  Google Scholar 

  • Refsgaard J A, Storm B (1995) Computer models of watershed hydrology, chap MIKE SHE. Water Resources Publications, pp 809–846

  • Rosenberry DO (2008) A seepage meter designed for use in flowing water. J Hydrol 359(1):118–130. doi:10.1016/j.jhydrol.2008.06.029

  • Rushton K (2007) Representation in regional models of saturated river–aquifer interaction for gaining/losing rivers. J Hydrol 334(1):262–281. doi:10.1016/j.jhydrol.2006.10.008

    Article  Google Scholar 

  • Said A, Stevens DK, Sehlke G (2005) Estimating water budget in a regional aquifer using HSPF-Modflow integrated model. J Am Water Resour As. doi:10.1111/j.1752-1688.2005.tb03717.x

    Google Scholar 

  • Saleh F, Flipo N, Habets F, Ducharne A, Oudin L, Viennot P, Ledoux E (2011) Modeling the impact of in-stream water level fluctuations on stream-aquifer interactions at the regional scale. J Hydrol 400(3):490–500. doi:10.1016/j.jhydrol.2011.02.001

    Article  Google Scholar 

  • Serrano SE, Workman S (1998) Modeling transient stream/aquifer interaction with the non-linear Boussinesq equation and its analytical solution. J Hydrol 206(3):245–255. doi:10.1016/S0022-1694(98)00111-5

    Article  Google Scholar 

  • Sophocleous M (2007) The science and practice of environmental flows and the role of hydrogeologists. Ground Water 45(4):393–401. doi:10.1111/j1745-6584.2007.00322.x

    Article  Google Scholar 

  • Sophocleous M, Townsend M, Vogler L, McClain T, Marks E, Coble G (1988) Experimental studies in stream-aquifer interaction along the Arkansas River in central Kansas–Field testing and analysis. J Hydrol 98(3):249–273. doi:10.1016/0022-1694(88)90017-0

    Article  Google Scholar 

  • Sparks TD, Bockelmann-Evans BN, Falconer RA (2013) Development and Analytical Verification of an Integrated 2-D Surface WaterâĂŤGroundwater Model. Water Resour Manag 27(8):2989–3004

    Article  Google Scholar 

  • Tellam JH, Lerner DN (2009) Management tools for the river-aquifer interface. Hydrol Process 23(15):2267–2274. doi:10.1002/hyp.7243

    Article  Google Scholar 

  • Thierion C, Longuevergne L, Habets F, Ledoux E, Ackerer P, Majdalani S, Leblois E, Lecluse S, Martin E, Queguiner S, Viennot P (2012) Assessing the water balance of the Upper Rhine Graben hydrosystem. J Hydrol 424-425:68–83. doi:10.1016/j.jhydrol.2011.12.028

    Article  Google Scholar 

  • Tóth J (1963) A Theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68(16):4795–4812. doi:10.1029/JZ068i016p04795

    Article  Google Scholar 

  • VanderKwaak JE, Loague K (2001) Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resour Res 37:999–1013. doi:10.1029/2000WR900272

    Article  Google Scholar 

  • Vermeulen P, Te Stroet C, Heemink A (2006) Limitations to upscaling of groundwater flow models dominated by surface water interaction. Water Resour Res 42(10):W10406. doi:10.1029/2005WR004620

    Article  Google Scholar 

  • Vidal JP, Martin E, Franchistéguy L, Baillon M, Soubeyroux JM (2010) A 50-year high-resolution atmospheric reanalysis over France with the Safran system. Int J Climatol 30(11):1627–1644. doi:10.1002/joc.2003

    Article  Google Scholar 

  • Viennot P (2009) Modélisation mathématique du fonctionnement hydrogéologique du bassin de la Seine - Représentation différentiée des aquifères du Tertiaire. Centre de Géosciences, MINES ParisTech

  • Wagener T, Sivapalan M, Troch PA, McGlynn BL, Harman CJ, Gupta HV, Kumar P, Rao P, Basu N, Wilson J (2010) The future of hydrology: An evolving science for a changing world. Water Resour Res 46:W05301. doi:10.1029/2009WR008906

    Article  Google Scholar 

  • Wasson JG, Tusseau-Vuillemin MH, Andréassian V, Perrin C, Faure JB, Barreteau O, Bousquet M, Chastan B (2003) What kind of water models are needed for the implementation of the European Water Framework Directive? Examples from France. Int J River Basin Manag 1(2):125–135

    Article  Google Scholar 

  • WFD (2000) Directive 2000/60/ec of the european parliament and of the council of the 23 october 2000 establishing a frame- work for community action in the field of water policy. official journal l 327, 22 dec. 2000. http://ec.europa.eu/environment/water/water-framework/

  • Xevi E, Christiaens K, Espino A, Sewnandan W, Mallants D, Sørensen H, Feyen J (1997) Calibration, validation and sensitivity analysis of the MIKE-SHE model using the Neuenkirchen catchment as case study. Water Resour Manag 11(3):219–242

    Article  Google Scholar 

  • Yang YS, Wang L (2010) A review of modelling tools for implementation of the EU water framework directive in handling diffuse water pollution. Water Resour Manag 24(9):1819–1843. doi:10.1007/s11269-009-9526-y

    Article  Google Scholar 

  • Zhang Qi, Werner AD (2009) Integrated surface–subsurface modeling of Fuxianhu Lake catchment, Southwest China. Water Resour Manag 23(11):2189–2204

    Article  Google Scholar 

Download references

Acknowledgements

This project was conducted on the request of the Agence de l’Eau Seine Normandie which participated substantially to the project funding. Funding was also supported by the CNES TOSCA SWOT project and the workpackage ”Stream-Aquifer Interfaces” of the PIREN Seine research program. We kindly thank the BRGM for providing the DEM and aquifer geometries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pryet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pryet, A., Labarthe, B., Saleh, F. et al. Reporting of Stream-Aquifer Flow Distribution at the Regional Scale with a Distributed Process-Based Model. Water Resour Manage 29, 139–159 (2015). https://doi.org/10.1007/s11269-014-0832-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-014-0832-7

Keywords

Navigation