Skip to main content

Advertisement

Log in

Optimum Operation of Reservoir Using Two Evolutionary Algorithms: Imperialist Competitive Algorithm (ICA) and Cuckoo Optimization Algorithm (COA)

  • Published:
Water Resources Management Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Water scarcity is one of the most serious problems in many parts of the world that affects negatively on the environment, society, and economy. In order to mitigate the negative effects of this issue, optimal water resource management is pivotal. In current paper, imperialist competitive algorithm (ICA) and cuckoo optimization algorithm (COA) which they are two new evolutionary methods, were used in optimal operation of reservoir. Firstly, these algorithms were used in solving several benchmark problems. Afterwards, optimal operation policy of Karun4 reservoir was extracted. Karun4 is located in Chaharmahal Va Bakhtiari province in western of Iran. Finally, the results which obtained from these methods were compared with genetic algorithm (GA) and nonlinear programing (NLP). In benchmark problems, COA converges to optimal point appropriately well and shows best performance. In these problems, ICA represent suitable ability to achieve global optimum. Both COA and ICA algorithms showed high performance in extraction of optimal operation policies from Karun4, which was conducted over a period of 360 months, with the aim of maximizing productivity. COA indicated the best performance with average value of 5.454 for objective function, and ICA with 6.461 value was at the second rank. In addition, GA objective function value was 6.869. Also NLP solver of Lingo11 was used in order to optimal operation of Karun4 reservoir for evaluating the ability of these algorithms to achieve global solution. Objective function value which was gained by NLP method was 5.243. The results reflect the strength of COA in approaching global optimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ackley DH (1987) A connectionist machine for genetic hill climbing

  • Afshar A, Masoumi F, Solis SS (2015) Reliability based optimum reservoir design by hybrid ACO-LP algorithm. Water Resour Manag 29(6):2045–2058. doi:10.1007/s11269-015-0927-9

    Article  Google Scholar 

  • Ahmadi M, Haddad OB, Loáiciga HA (2015) Adaptive reservoir operation rules under climatic change. Water Resour Manag 29(4):1247–1266. doi:10.1007/s11269-014-0871-0

    Article  Google Scholar 

  • Ahmed JA, Sarma AK (2005) Genetic algorithm for optimal operating policy of a multipurpose reservoir. Water Resour Manag 19(2):145–161. doi:10.1007/s11269-005-2704-7

    Article  Google Scholar 

  • Alaya BA, Souissi A, Tarhouni J, Ncib K (2003) Optimization of Nebhana reservoir water allocation by stochastic dynamic programming. Water Resour Manag 17(4):259–272. doi:10.1023/A:1024721507339

    Article  Google Scholar 

  • Atashpaz-Gargari E, Lucas C (2007). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on (4661–4667). IEEE. September, 2007, Singapore. doi: 10.1109/CEC.2007.4425083

  • Bai T, Wu L, Chang JX, Huang Q (2015) Multi-objective optimal operation model of cascade reservoirs and its application on water and sediment regulation. Water Resour Manag 1–20. doi:10.1007/s11269-015-0968-0

  • Blanchini F, Ukovich W (1993) Linear programming approach to the control of discrete-time periodic systems with uncertain inputs. J Optimiz Theory App 78(3):523–539. doi:10.1007/BF00939880

    Article  Google Scholar 

  • Bozorg Haddad O, Afshar A, Mariño MA (2011) Multireservoir optimisation in discrete and continuous domains. Proc ICE Water Manag 164(2):57–72. doi:10.1680/wama.900077

    Article  Google Scholar 

  • Chau KW, Albermani F (2003) Knowledge-based system on optimum design of liquid retaining structures with genetic algorithms. J Struct Eng 129(10):1312–1321. doi:10.1061/(ASCE)0733-9445(2003)129:10(1312)

    Article  Google Scholar 

  • Cheng CT, Wang WC, Xu DM, Chau KW (2008) Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos. Water Resour Manag 22(7):895–909. doi:10.1007/s11269-007-9200-1

    Article  Google Scholar 

  • Chiang PK, Willems P (2015) Combine evolutionary optimization with model predictive control in real-time flood control of a river system. Water Resour Manag 1–16. doi:10.1007/s11269-015-0955-5

  • Chow VT, Cortes-Rivera G (1974) Application of DDDP in water resources planning. Department of civil engineering, University of illinois at urbana-champaign, IL, USA. Research report

  • Esat V, Hall MJ (1994) Water resources system optimization using genetic algorithms.In: Proceedings of first international conference on hydroinformatics, Balkema, Rotterdam, The Netherlands, 225–231

  • Foufoula-Georgiou E, Kitanidis PK (1988) Gradient dynamic programming for stochastic optimal control of multidimensional water resources systems. Water Resour Res 24(8):1345–1359. doi:10.1029/WR024i008p01345

    Article  Google Scholar 

  • Galelli S, Soncini-Sessa R (2010) Combining metamodelling and stochastic dynamic programming for the design of reservoir release policies. Environ Model Softw 25(2):209–222. doi:10.1016/j.envsoft.2009.08.001

    Article  Google Scholar 

  • Goldberg DE, Kuo CH (1987) Genetic algorithms in pipeline optimization. J Comput Civ Eng 1(2):128–141. doi:10.1061/(ASCE)0887-3801(1987)1:2(128)

    Article  Google Scholar 

  • Jian-Xia C, Qiang H, Yi-Min W (2005) Genetic algorithms for optimal reservoir dispatching. Water Resour Manag 19(4):321–331. doi:10.1007/s11269-005-3018-5

    Article  Google Scholar 

  • Labadie JW (2004) Optimal operation of multireservoir systems: state-of-the-art review. J Water Resour Plann Manag 130(2):93–111. doi:10.1061/(ASCE)0733-9496(2004)130:2(93)

    Article  Google Scholar 

  • Labadie JW, Zheng F, Wan Y (2012) Optimal integrated operation of reservoir-assisted stormwater treatment areas for estuarine habitat restoration. Environ Model Softw 38:271–282. doi:10.1016/j.envsoft.2012.07.005

    Article  Google Scholar 

  • Mellal MA, Adjerid S, Williams EJ, Benazzouz D (2012) Optimal replacement policy for obsolete components using cuckoo optimization algorithm based-approach: dependability context. J Sci Ind Res 71:715–721

    Google Scholar 

  • Mokhtari Fard M, Noroozian R, Molaei S (2012) Determining the optimal placement and capacity of DG in intelligent distribution networks under uncertainty demands by COA. In: Smart Grids (ICSG), 2012 2nd Iranian Conference on 1–8. IEEE, May, 2012, Iran

  • Momtahen S, Dariane AB (2007) Direct search approaches using genetic algorithms for optimization of water reservoir operating policies. J Water Resour Plann Manag 133(3):202–209. doi:10.1061/(ASCE)0733-9496(2007)133:3(202)

    Article  Google Scholar 

  • Mousavi Rad SJ, Akhlaghian Tab F, Mollazade K (2012) Application of imperialist competitive algorithm for feature selection: a case study on bulk rice classification. Int J Comput Appl T 40(16):41–48. doi:10.5120/5068-7485

    Google Scholar 

  • Mousavi SJ, Ponnambalam K, Karray F (2005) Reservoir operation using a dynamic programming fuzzy rule–based approach. Water Resour Manag 19(5):655–672. doi:10.1007/s11269-005-3275-3

    Article  Google Scholar 

  • Murray DM, Yakowitz SJ (1979) Constrained differential dynamic programming and its application to multireservoir control. Water Resour Res 15(5):1017–1027. doi:10.1029/WR015i005p01017

    Article  Google Scholar 

  • Nagesh Kumar D, Raju KS, Ashok B (2006) Optimal reservoir operation for irrigation of multiple crops using genetic algorithms. J Irrig Drain Eng 132(2):123–129. doi:10.1061/(ASCE)0733-9437(2006)132:2(123)

    Article  Google Scholar 

  • Oliveira R, Loucks DP (1997) Operating rules for multireservoir systems. Water Resour Res 33(4):839–852. doi:10.1029/96WR03745

    Article  Google Scholar 

  • Oskuyee MA (2012) Evaluation of optimization methods ant colony and imperialist competitive algorithm in face emotion recognition. Int J Adv Res Comput Sci 3(1):206–209

    Google Scholar 

  • Ponnambalam K, Vannelli A, Unny TE (1989) An application of Karmarkar's interior-point linear programming algorithm for multi-reservoir operations optimization. Stoch Hydrol Hydraul 3(1):17–29. doi:10.1007/BF01543425

    Article  Google Scholar 

  • Porse EC, Sandoval-Solis S, Lane BA (2015) Integrating environmental flows into multi-objective reservoir management for a transboundary. Rio Grande/Bravo. Water Resour Manag, Water-Scarce River Basin, pp 1–14. doi:10.1007/s11269-015-0952-8

    Google Scholar 

  • Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft Comput 11(8):5508–5518. doi:10.1016/j.asoc.2011.05.008

    Article  Google Scholar 

  • Rani D, Moreira MM (2010) Simulation–optimization modeling: a survey and potential application in reservoir systems operation. Water Resour Manag 24(6):1107–1138. doi:10.1007/s11269-009-9488-0

    Article  Google Scholar 

  • Reddy MJ, Nagesh Kumar D (2006) Optimal reservoir operation using multi-objective evolutionary algorithm. Water Resour Manag 20(6):861–878. doi:10.1007/s11269-005-9011-1

    Article  Google Scholar 

  • Rosenbrock HH (1960) An automatic method for finding the greatest or least value of a function. Comp J 3(3):175–184. doi:10.1093/comjnl/3.3.175

    Article  Google Scholar 

  • Sharif M, Wardlaw R (2000) Multireservoir systems optimization using genetic algorithms: case study. J Comput Civ Eng 14(4):255–263. doi:10.1061/(ASCE)0887-3801(2000)14:4(255)

    Article  Google Scholar 

  • Stedinger JR, Sule B, Loucks DP (1984) Stochastic dynamic programming models for reservoir operation optimization. Water Resour Res 20(11):1499–1505. doi:10.1029/WR020i011p01499

    Article  Google Scholar 

  • Umamahesh NV, Sreenivasulu P (1997) Technical communication: two-phase stochastic dynamic programming model for optimal operation of irrigation reservoir. Water Resour Manag 11(5):395–406. doi:10.1023/A:1007914019102

    Article  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. Evolutionary computation. IEEE Transactions on 1(1):67–68. doi:10.1109/4235.585893

    Google Scholar 

  • Wurbs RA (1993) Reservoir-system simulation and optimization models. J Water Resour Plann Manag 119(4):455–472. doi:10.1061/(ASCE)0733-9496(1993)119:4(455)

    Article  Google Scholar 

  • Yakowitz S (1982) Dynamic programming applications in water resources. Water Resour Res 18(4):673–696. doi:10.1029/WR018i004p00673

    Article  Google Scholar 

  • Yeh WWG (1985) Reservoir management and operations models: a state-of-the-art review. Water Resour Res 21(12):1797–1818. doi:10.1029/WR021i012p01797

    Article  Google Scholar 

  • Yousefi M, Darus AN, Mohammadi H (2012) An imperialist competitive algorithm for optimal design of plate-fin heat exchangers. Int J Heat Mass Tran 55(11):3178–3185. doi:10.1016/j.ijheatmasstransfer.2012.02.041

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed-Mohammad Hosseini-Moghari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini-Moghari, SM., Morovati, R., Moghadas, M. et al. Optimum Operation of Reservoir Using Two Evolutionary Algorithms: Imperialist Competitive Algorithm (ICA) and Cuckoo Optimization Algorithm (COA). Water Resour Manage 29, 3749–3769 (2015). https://doi.org/10.1007/s11269-015-1027-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-015-1027-6

Keywords

Navigation