Skip to main content
Log in

A Novel Method to Water Level Prediction using RBF and FFA

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Water level prediction of rivers, especially in flood prone countries, can be helpful to reduce losses from flooding. A precise prediction method can issue a forewarning of the impending flood, to implement early evacuation measures, for residents near the river, when is required. To this end, we design a new method to predict water level of river. This approach relies on a novel method for prediction of water level named as RBF-FFA that is designed by utilizing firefly algorithm (FFA) to train the radial basis function (RBF) and (FFA) is used to interpolation RBF to predict the best solution. The predictions accuracy of the proposed RBF–FFA model is validated compared to those of support vector machine (SVM) and multilayer perceptron (MLP) models. In order to assess the models’ performance, we measured the coefficient of determination (R 2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results show that the developed RBF–FFA model provides more precise predictions compared to different ANNs, namely support vector machine (SVM) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real time water stage measurements. The results specify that the developed RBF–FFA model can be used as an efficient technique for accurate prediction of water stage of river.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akrami SA, Nourani V, Hakim SJS (2014) Development of nonlinear model based on wavelet-ANFIS for rainfall forecasting at Klang gates dam. Water Resour Manag 28:2999–3018

    Article  Google Scholar 

  • Ansong, Mary Opokua, Yao, Hong-Xing, & Huang, Jun Steed. (2013). Radial and sigmoid basis function neural networks in wireless sensor routing topology control in underground mine rescue operation based on particle swarm optimization. International Journal of Distributed Sensor Networks, 2013.

  • Bazartseren B, Hildebrandt G, Holz K-P (2003) Short-term water level prediction using neural networks and neuro-fuzzy approach. Neurocomputing 55(3):439–450

    Article  Google Scholar 

  • Bhattacharjya RK, Datta B (2005) Optimal management of coastal aquifers using linked simulation optimization approach. Water Resour Manag 19:295–320

    Article  Google Scholar 

  • Chau KW (2006) Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J Hydrol 329(3):363–367

    Article  Google Scholar 

  • Coulibaly P, Anctil F, Bobee B (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J Hydrol 230:244–257

    Article  Google Scholar 

  • Coulibaly P, Anctil F, Aravena R, Bobee B (2001) Artificial neural network modeling of water table depth fluctuations. Water Res 37:885–896

    Article  Google Scholar 

  • Daliakopoulose NI, Colibaly P, Tsanis KI (2005) Groundwater level forecasting using artificial neural networks. Hydrol 309:229–240

    Article  Google Scholar 

  • Emamgholizadeh S (2012) Neural network modeling of scour cone geometry around outlet in the pressure flushing. Glob Nest J 14:540–549

    Google Scholar 

  • Emamgholizadeh S, Bateni SM, Jeng DS (2013a) Artificial intelligence-based estimation of flushing half-cone geometry. Eng Appl Artif Intell 26:2551–2558

    Article  Google Scholar 

  • Emamgholizadeh S, Moslemi K, Karami G (2014) Prediction the groundwater level of bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Water Resour Manag 28(15):5433–5446

    Article  Google Scholar 

  • Fister I, Fister I, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evolut Comput 13:34–46

    Article  Google Scholar 

  • Foody GM (2004) Supervised image classification by MLP and RBF neural networks with and without an exhaustively defined set of classes. Int J Remote Sens 25(15):3091–3104

    Article  Google Scholar 

  • Ghose D, Panada S, Swain P (2010) Prediction of water table depth in western region. Orissa using BPNN and RBFN neural networks J Hydr:296–304

  • Goudarzi, Shidrokh, Hassan, Wan Haslina, Soleymani, Seyed Ahmad, Anisi, Mohammad Hossein, & Shabanzadeh, Parvaneh. A Novel Model on Curve Fitting and Particle Swarm Optimization for Vertical Handover in Heterogeneous Wireless Networks.(2015)

  • Kentel E (2009) Estimation of river flow by artificial neural networks and identification of input vectors susceptibble to producing unreliable flow estimates. J Hydrol:481–488

  • Kisi O, Shiri J, Karimi S, Shamshirband S, Motamedi S, Petković D, Hashim R (2015) A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm. Appl Math Comput 270:731–743

    Google Scholar 

  • Lam KF, Mui HW, Yuen HK (2001) A note on minimizing absolute percentage error in combined forecasts. Comput Oper Res 28(11):1141–1147

    Article  Google Scholar 

  • Li J, Tan S (2015) Nonstationary Flood Frequency Analysis for Annual Flood Peak Series, Adopting Climate Indices and Check Dam Index as Covariates. Water Resour Manag 29(15):5533–5550

    Article  Google Scholar 

  • Long, Nguyen Cong, & Meesad, Phayung. (2013). Meta-heuristic algorithms applied to the optimization of type-1 and type 2 TSK fuzzy logic systems for sea water level prediction. Paper presented at the Computational Intelligence & Applications (IWCIA), 2013 I.E. Sixth International Workshop on.

  • Łukasik, Szymon, & Żak, Sławomir. (2009). Firefly algorithm for continuous constrained optimization tasks Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems (pp. 97-106): Springer.

  • Mohanty S, Jha K, Kumar A, Sudheer K (2010) Artificial neural network modeling for groundwater level forecasting in a river island of eastern India. J Water Resour Manag 24:1845–1865

    Article  Google Scholar 

  • National Geographic. (2016). Retrieved from http://environment.nationalgeographic.com/environment/natural-disasters/floods-profile/

  • Nayak P, SatyajiRao Y, Sudheer K (2006) Groundwater level forcasting in a shallow aquifer using artificial neural network. J Water Resour Manag 20:77–90

    Article  Google Scholar 

  • Nourani V, AsghariMoghaddam A, Nadiri A (2008) An ANN-based model for spatiotemporal groundwater level forcasting. J Hydrol Proc 22:5054–5066

    Article  Google Scholar 

  • Online flood information website. (2016). Retrieved from http://infobanjir.water.gov.my/real_time.cfm

  • Qi H, Qi P, M.S A (2013) GIS-Based Spatial Monte Carlo Analysis for Integrated Flood Management with Two Dimensional Flood Simulation. Water Resour Manag 27(10):3631–3645

    Article  Google Scholar 

  • Rao CR (1973) Linear statistical inference and its application. 2nd ed. Wiley, New York

  • Rogers LL, Dowla FU, Johnson VM (1995) Optimal field-scale groundwater remediation using neural networks and the genetic algorithm. Environ Sci Technol 29(5):1145–1155

    Article  Google Scholar 

  • Siddiquee, Mohammed Saiful Alam, & Hossain, Mollah Md Awlad. Development of a sequential Artificial Neural Network for predicting river water levels based on Brahmaputra and Ganges water levels. Neural Computing and Applications, 1-12. (2014)

  • Vasant, Pandian M. (2012). Meta-heuristics optimization algorithms in engineering, business, economics, and finance: IGI Global.

  • Yang XS (2008) Nature-Inspired Metaheuristic Algorithms. Luniver Press

  • Yang, Xin-She. (2010a). Engineering optimization: an introduction with metaheuristic applications: John Wiley & Sons.

  • Yang X-S (2010b) Firefly algorithm, stochastic test functions and design optimisation. International Journal of Bio-Inspired Computation 2(2):78–84

    Article  Google Scholar 

  • Yang CC, Prasher S, Lacroxi R (1996) Application of artificial neural network to simulate water-table depths under subirrigation. Cana Water Res J:1–12

  • Yang CC, Prasher SO, Lacroix R, Sreekanth S, Patni NK, Masse L (1997) Artificial neural network model for subsurfacedrained farmland. J Irrig Drain Eng 123:285–292

    Article  Google Scholar 

  • Yang ZP, Lu WX, Long YQ, Li P (2009) Application and comparison of two prediction models for groundwater levels; a case study in western Jilin province, China. J Arid Environ 73:487–492

    Article  Google Scholar 

  • Yu H, Xie T, Paszczynski S, Wilamowski BM (2011) Advantages of radial basis function networks for dynamic system design. Industrial Electronics, IEEE Transactions on 58(12):5438–5450

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank University of Malaya for the financial support (UMRG Grant RP036A-15AET, RP036B-15AET, RP036C-15AET) and facilities to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Anisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleymani, S.A., Goudarzi, S., Anisi, M.H. et al. A Novel Method to Water Level Prediction using RBF and FFA. Water Resour Manage 30, 3265–3283 (2016). https://doi.org/10.1007/s11269-016-1347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-016-1347-1

Keywords

Navigation