Skip to main content
Log in

Nitrogen And Phosphorus Removal In Substrate-Free Pilot Constructed Wetlands With Horizontal Surface Flow In Uganda

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

In constructed wetlands (CWs) with horizontal sub-surface flow, nutrient removal, especially phosphorus, is limited because the root biomass fills the pore spaces of the substrate (usually gravel), directing wastewater flow to deeper wetland media; plants are not regularly harvested; the litter formed by decomposing vegetation remains on the surface of the substrate and thus does not interact with the wastewater; and the substrate media often used provide only limited adsorption. Effective nutrient removal including rootzone oxidation, adsorption and plant uptake therefore requires sufficient interaction of wastewater with the treatment media. We assessed the feasibility of biological nutrient removal from wastewater using substrate-free CWs with horizontal flow, planted with two tropical macrophytes namely, Cyperus papyrus and Miscanthidium violaceum. The objectives were to evaluate the system treatment efficiency under semi-natural conditions, and to assess microbial and plant biomass contributions to nutrient removal in the CWs. Results showed high removal efficiencies for biochemical oxygen demand, ammonium-nitrogen (NH4–N) and phosphorus (P) fractions in papyrus-based CWs (68.6–86.5%) compared to Miscanthidium (46.7–61.1%) and unplanted controls (31.6–54.3%). Ammonium oxidizing bacteria in CW root–mats (108–109 cells/gram dry weight) and residual nitrite and nitrate concentrations in the water phase indicated active system nitrification. Papyrus showed higher biomass production and nutrient uptake, contributing 28.5% and 11.2%, respectively, of the total N and P removed by the system compared to 15% N and 9.3% P removed by Miscanthidium plants. Compared to literature values, nitrification, plant uptake and the overall system treatment efficiency were high, indicating a high potential of this system for biological nutrient removal from wastewaters in the tropics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA (American Public Health Association): 1995, Standard Methods for the Examination of Water and Wastewater, 19th ed., American Public Health Association Inc., Washington, DC, USA.

    Google Scholar 

  • Armstrong, J. and Armstrong, W.: 1988, ‘Phragmites australis — a preliminary study of soil-oxidising sites and internal gas transport pathways’, New Phytol. 108, 372–382.

    Google Scholar 

  • Azza, N. G. T., Kansiime, F., Nalubega, M. and Denny, P.: 2000, ‘Differential permeability of papyrus and Miscanthidium root mat in Nakivubo swamp, Uganda’, Aquat. Bot. 67, 169–178.

    Article  Google Scholar 

  • Bastviken, K. S., Eriksson, P. G., Martins, I., Neto, J. M., Leonardson, L. and Tonderski, K.: 2003, ‘Potential nitrification and denitrification on different surfaces in a constructed treatment wetland’, J. Environ. Qual. 32, 2414–2420.

    PubMed  Google Scholar 

  • Belser, L. W. and Mays, E. L.: 1982, ‘Use of nitrifier activity measurements to estimate the efficiency of viable nitrifier counts in soils and sediments’, Appl. Environ. Microbiol. 43, 945–948.

    Google Scholar 

  • Bitton, G.: 1994, Wastewater Microbiology, Wiley-Liss, New York.

    Google Scholar 

  • Boyd, C. E.: 1970, ‘Production, mineral accumulation and pigment concentrations in Typha Latifolia and Scirpus americanus’, Ecology 51, 285–290.

    Google Scholar 

  • Breen, P. F. and Chick, A. J.: 1995, ‘Rootzone dynamics in constructed wetlands receiving wastewater: A comparison of vertical and horizontal flow systems’, Water Sci. Technol. 32, 281–290.

    Article  Google Scholar 

  • Brix, H.: 1994, ‘Use of constructed wetlands in water pollution control: Historical development, present status and future perspectives’, Water Sci. Technol. 30, 209–223.

    Google Scholar 

  • Brix, H.: 1997, ‘Do macrophytes play a role in constructed treatment wetlands?’, Water Sci. Technol. 35, 11–17.

    Article  Google Scholar 

  • Brix, H., Arias, C. A. and del Bubba, M.: 2001, ‘Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands’, Water Sci. Technol. 44, 47–54.

    Google Scholar 

  • Brix, H., Sorrell, B. K. and Orr, P. T.: 1992, ‘Internal pressurization and convective gas flow in some emergent freshwater macrophytes’, Limnol. Oceanogr. 37(7), 1420–1433.

    Google Scholar 

  • Chale, F. M. M.: 1985, ‘Effects of a Cyperus papyrus L. swamp on domestic wastewater’, Aquat. Bot. 23, 185–189.

    Article  Google Scholar 

  • Chale, F. M. M.: 1987, ‘Plant biomass and nutrient levels of a tropical macrophyte (Cyperus papyrus L) receiving domestic wastewater’, Hydrobiol. Bull. 21(2), 167–170.

    Google Scholar 

  • Cloete, T. E. and Muyima, N. Y. O.: 1997, ‘Microbial community analysis: The key to the design of biological wastewater treatment systems’, in T.E. Cloete and N.Y.O. Muyima (eds), International Association on Water Quality (IAWQ) Scientific and Technical report No. 5, Cambridge University Press, Cambridge, pp. 10.

    Google Scholar 

  • Cooke, J. G.: 1992, ‘Phosphorus removal processes in a wetland after a decade of receiving a sewage effluent’, J. Environ. Qual. 21, 733–739.

    Google Scholar 

  • Coleman, J., Hench, K., Garbutt, K., Sexstone, A., Bissonnette, G. and Skousen, J.: 2001, ‘Treatment of domestic wastewater by three plant species in constructed wetlands’, Water, Air, and Soil Pollut. 128, 283–295.

    Google Scholar 

  • DeBusk, T. A. and DeBusk, W. F.: 2001, ‘Wetlands for water treatment’, in D.M. Kent (ed.), Wetlands Science and Technology, 2nd edn, CRC Press, Boca Raton, USA.

    Google Scholar 

  • Eriksson, P. G. and Weisner, S. E. B.: 1999, ‘An experimental study on effects of submersed macrophytes on nitrification and denitrification in ammonium-rich aquatic systems’, Limnol. Oceanogr. 44(8), 1993–1999.

    Google Scholar 

  • Focht, D. D. and Verstraete, W.: 1977, ‘Biochemical ecology of nitrification and denitrification’, Adv. Microb. Ecol. 1, 135–214.

    Google Scholar 

  • Gerardi, M. H.: 2002, ‘Nitrification and Denitrification in Activated Sludge Processes’, Wastewater Microbiology Series, John Wiley and Sons, Inc, New York.

    Google Scholar 

  • Grunditz, C., Gumaelius, L. and Dalhammar, D.: 1998, ‘Comparison of inhibition assays using nitrogen-removing bacteria: application to industrial wastewaters’, Water Res. 32, 2995–3000.

    Article  Google Scholar 

  • Haberl, R. and Perfler, R.: 1990, ‘Seven years of research work and experience with wastewater treatment by a reed bed system’, in P.F. Cooper and B.C. Findlater (eds), Constructed Wetlands in Water Pollution Control, Pergamon Press, Oxford, UK, pp. 205–214.

    Google Scholar 

  • Hammer, D. A. (ed.): 1989, ‘Constructed Wetlands for Wastewater Treatment: Municipal, Industrial and Agricultural’, Lewis Publishers Inc., Chelsea, Michigan, pp. 831.

    Google Scholar 

  • Heidenwang, I., Langheinrich, U. and Luderitz V.: 2001, ‘Self-purification in upland and lowland streams’, Acta Hydroch. Hydrobiol. 29, 22–33.

    Article  Google Scholar 

  • Hiley, P. D.: 1995, ‘The reality of sewage treatment using wetlands’, Water Sci. Technol. 32(3), 329–338.

    Article  Google Scholar 

  • Howard-Williams, C.: 1985, ‘Cycling and retention of nitrogen and phosphorus in wetlands: A theoretical and applied perspective’, Freshwater Biol. 15, 391–431.

    Google Scholar 

  • Hynes, R. K. and Knowles, R.: 1983, ‘Inhibition of chemoautotrophic nitrification by sodium chlorite: a reexamination’, Appl. Environ. Microbiol. 45, 1178–1182.

    Google Scholar 

  • Im, J. H., Woo, H. J., Choi, M. W., Hi, K. B. and Kim, C. W.: 2001, ‘Simultaneous organic and nitrogen removal from municipal landfill leachate using an anerobic—aerobic system’, Water Res. 35, 2403–2410.

    Article  PubMed  Google Scholar 

  • Jones, M. B.: 1986, ‘Wetlands’, in N.R. Baker and S.P. Long (eds), Photosynthesis in Contrasting Environments, vol. 7, Topics in Photosynthesis, Elsevier, Amsterdam, pp. 103–138.

    Google Scholar 

  • Kadlec, R. H. and Knight, R. L.: 1996, ‘Treatment wetlands’, Lewis—CRC Press, Boca Raton, FL, U.S.A, pp. 893.

    Google Scholar 

  • IWA.: 2000, ‘Constructed wetlands for pollution control: processes, performance, design and operation’, in. R.H. Kadlec, R.L. Knight, J. Vymazal, H. Brix, P. Cooper and R. Haberl (eds), IWA specialist group on the use of macrophytes in water pollution control, Scientific and Technical Report No. 8, IWA Publishing, London, UK: pp. 1–156.

    Google Scholar 

  • Kansiime, F., Nalubega, M., van Bruggen, J. J. A. and Denny, P.: 2003, ‘The effect of wastewater discharge on biomass production and nutrient content of Cyperus papyrus and Miscanthidium violaceum in the Nakivubo wetland, Kampala, Uganda’, Water Sci. Technol. 48(5), 233–240.

    Google Scholar 

  • Kaseva, M. E.: 2004, ‘Performance of a sub-surface flow constructed wetland in polishing pre-treatment wastewater—a tropical case study’, Water Res. 38(3), 681–687.

    Article  PubMed  Google Scholar 

  • Kickuth, R.: 1977, ‘Degradation and incorporation of nutrients from rural wastewaters by plant rhizosphere under limnic conditions’, in Proceedings of the International Conference on Utilization of Manure by Land Spreading, Commission of the European Community, EUR 5672e, London, U.K., pp. 335–343.

  • Kipkemboi, J., Kansiime, F. and Denny, P.: 2002, ‘The response of Cyperus papyrus (L.) and Miscanthidium violaceum (K. Schum.) Robyns to eutrophication in natural wetlands of Lake Victoria, Uganda’, Afr. J. Aquat. Sci. 27(1), 11–20.

    Google Scholar 

  • Körner, S.: 1999, ‘Nitrifying and denitrifying bacteria in epiphytic communities of submerged macrophytes in a treated sewage channel’, Acta Hydrochim. Hydrobiol. 27(1), 27–31.

    Article  Google Scholar 

  • Kyambadde, J., Kansiime, F. and Dalhammar, G.: 2004a, ‘Hydraulic loading, stability and water quality of Nakivubo wetland in Uganda’, Afr. J. Aquat. Sci. 29(2).

  • Kyambadde, J., Kansiime, F., Gumaelius, L. and Dalhammar, G.: 2004b, ‘A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate’, Water Res. 38(2), 475–485.

    Article  Google Scholar 

  • Muthuri, F. M. and Jones, M. B.: 1997, ‘Nutrient distribution in a papyrus swamp: Lake Naivasha, Kenya’, Aquat. Bot. 56, 35–50.

    Article  Google Scholar 

  • Muthuri, F. M., Jones, M. B. and Imbamba, S. K.: 1989, ‘Primary productivity of papyrus (Cyperus papyrus) in a tropical swamp: Lake Naivasha, Kenya’, Biomass 18, 1–14.

    Article  Google Scholar 

  • NEMA (National Environment Management Authority): 1999, ‘Environmental standards and preliminary environment impact assessment for water quality and discharge of effluent into water and on land in Uganda’, National Environment Management Authority— Ministry of Natural Resources—Government of the Republic of Uganda, Kampala, Uganda, pp. 89.

    Google Scholar 

  • Nichols, D. S.: 1983, ‘Capacity of natural wetlands to remove nutrients from wastewater’, J. Water Pollut. Control Fed. 55, 495–505.

    Google Scholar 

  • Nogueira, R., Melo, L. F., Purkhold, U., Wuertz, S. and Wagner, M.: 2002, ‘Nitrifying and heterotrophic population dynamics in biofilm reactors: Effects of hydraulic retention time and the presence of organic carbon’, Water Res. 36, 469–481.

    Article  PubMed  Google Scholar 

  • Novozamsky, I., Houba, V. J. G., van Eck, R. and van Vark, W.: 1983, ‘A novel digestion technique for multi-element plant analysis’, Commun. Soil Sci. Plant Anal. 14(3), 239–248.

    Google Scholar 

  • Obarska-Pompkowiak, H.: 1999, ‘Nutrient cycling and retention in constructed wetland system in Darzlubie near Puck Bay, Southern Baltic Sea’, in J. Vymazal (ed.), Nutrient Cycling and Retention in Natural and Constructed Wetlands, Backhuys Publishers, Leiden, The Netherlands, pp. 41–48.

    Google Scholar 

  • Okurut, T. O.: 2001, ‘Plant growth and nutrient uptake in a tropical constructed wetland’, in J. Vymazal (ed), Transformations of Nutrients in Natural and Constructed Wetlands, Backhuys Publishers, Leiden, The Netherlands, pp. 451–462.

    Google Scholar 

  • Okurut, T. O., Rijs, G. B. J. and van Bruggen, J. J. A.: 1999, ‘Design and performance of experimental constructed wetlands in Uganda, planted with Cyperus papyrus and Phragmites mauritianus’, Water Sci. Technol. 40(3), 265–271.

    Article  Google Scholar 

  • Patureau, D., Godon, J. J., Dabert, P., Bouchez, T., Bernet, N., Delgenes, J. P. and Moletta, R.: 1998, ‘Microvirgula aerodenitrificans gen. nov., sp., a new gram-negative bacterium exhibiting co-respiration of oxygen and nitrogen oxides up to oxygen saturated conditions’, Int. J. Syst. Bacteriol. 48, 775–782.

    PubMed  Google Scholar 

  • Plessis, C. A. du., Kinney, K. A., Schroeder, E. D., Chang, D. P. Y. and Scow, K. M.: 1998, ‘Denitrification and nitric oxide reduction in an aerobic toluene-treating biofilter’, Biotechnol. Bioeng. 58, 408–415.

    Article  PubMed  Google Scholar 

  • Ran, N., Agami, M. and Oron, G.: 2004, ‘A pilot study of constructed wetlands using duckweed (Lemna gibba L.) for treatment of domestic primary effluent in Israel’, Water Res. 38(9), 2241–2248.

    Article  Google Scholar 

  • Reddy, K. R. and D‘Angelo, E. M.: 1997, ‘Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands’, Water Sci. Technol. 35(5), 1–10.

    Article  Google Scholar 

  • Reed, S. C., Crites, R. W. and Middlebrooks, E. J.: 1995, ‘Natural Systems for Wastewater Management and Treatment’, McGraw-Hill Inc., New York, pp. 308.

    Google Scholar 

  • Schmidt, E. L. and Belser, L. W.: 1982, ‘Nitrifying bacteria’, in A.L. Page, R.H. Miller and D.R. Keeney (eds), Methods of soil analysis, Part 2: chemical and microbiological properties, vol. 9, American Society of Agronomy Monograph, Madison, W.I., pp. 1027–1042.

    Google Scholar 

  • Stensel, H. D. and Barnard, J. L.: 1992, ‘Principles of biological nutrient removal’, in C.W. Randal, J.L. Barnard and H.D. Stensel (eds), Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal, Technomic Pub. Co. Inc., Lancaster, pp. 25–45.

    Google Scholar 

  • Trepel, M. and Palmeri, L.: 2002, ‘Quantifying nitrogen retention in surface flow wetlands for environmental planning at the landscape-scale’, Ecol. Eng. 19, 127–140.

    Article  Google Scholar 

  • van Benthum, W. A. J., van Loosdrecht, M. C. M. and Heijnen, J. J.: 1997, ‘Control of heterotrophic layer formation on nitrifying biofilms in a biofilm airlift suspension reactor’, Biotechnol. Bioeng. 53, 397–405.

    Article  Google Scholar 

  • Verhoeven, J. T. A.: 1986, ‘Nutrient dynamics in minerotrophic peat mires’, Aquat. Bot. 25, 117–167.

    Article  Google Scholar 

  • Vymazal, J.: 1999, ‘Removal of phosphorus in constructed wetlands with horizontal sub-surface flow in the Czech Republic’, in J. Vymazal (ed), Nutrient Cycling and Retention in Natural and Constructed Wetlands, Backhuys Publishers, Leiden, The Netherlands, pp. 73–83.

    Google Scholar 

  • Vymazal, J.: 2004, ‘Removal of phosphorus in constructed wetlands with horizontal sub-surface flow in the Czech Republic’, Water, Air, Soil Pollut. 4, 657–670.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Kyambadde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyambadde, J., Kansiime, F. & Dalhammar, G. Nitrogen And Phosphorus Removal In Substrate-Free Pilot Constructed Wetlands With Horizontal Surface Flow In Uganda. Water Air Soil Pollut 165, 37–59 (2005). https://doi.org/10.1007/s11270-005-4643-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-005-4643-6

Keywords

Navigation