Skip to main content
Log in

Principle and Process of Biofiltration of Cd, Cr, Co, Ni & Pb from Tropical Opencast Coalmine Effluent

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Opencast coalmine effluent contains higher concentrations of Cd, Cr, Co, Ni and Pb. Biofiltration of these metals has been demonstrated successfully with the help of aquatic macrophytes i.e., E. crassipes, L. minor and A. pinnata. Experiments revealed E. crassipes reduced highest concentration of heavy metals followed by L. minor and A. pinnata on 20th days retention period. Plant tissue analysis revealed higher accumulation of metals in roots than leaves. Highly significant correlations have been noted between removal of heavy metals in effluent and their accumulation in roots and leaves of the experimental sets. Translocation factor also revealed lower transportation of metals from root to leaves. Reduction in chlorophyll and protein content was noted with the accumulation of heavy metals. N, P and K analysis in plant tissues indicated continuous decrease in their concentration with increasing metal concentration. Negative and significant correlations between metal accumulation and N, P and K concentrations in plant tissues showed adverse effects of heavy metals. Analysis of variance (Dunnett t-test) showed significant results (p < 0.001) for all the metals in different durations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abdel-Basset, R., Issa, A. A., & Adam, M. S. (1995). Chlorophylase activity: Effect of heavy metals and calcium. Photosynthetica, 31, 421–425.

    CAS  Google Scholar 

  • Ait Ali, N., Bernal M. P., & Alter, M. (2002). Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant and Soil, 239, 103–111.

    Article  Google Scholar 

  • Antunes, A. P. M., Watkins, G. M., & Duncan, J. R. (2001). Batch studies on removal of gold(III) from aqueous solution by Azolla filiculoides. Biotechnologies, 23, 249–251.

    CAS  Google Scholar 

  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    CAS  Google Scholar 

  • Asthana, D. K., & Asthana, M. (2003). Environment-problems & solutions. New Delhi: S.Chand & Ramnagar.

    Google Scholar 

  • Axtell, N. R., Sternberg, P. K. Steven, N., & Claussen, K. (2003). Lead and nickel removal using Microspora and Lemna minor. Bioresource Technology, 89(1), 41–48.

    Article  CAS  Google Scholar 

  • Azcue, J. M., & Nriagu, J. O. (1994). Arsenic: Historical perspectives. In J. O. Nriagu (Ed.), Arsenic in the environment, Part I: Cycling and characterization (pp. 1–15). New York: Wiley.

    Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders – Strategies in response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654.

    CAS  Google Scholar 

  • Beckett, P. H. T., & Davis R. D. (1977). Upper critical levels of toxic elements in plants. New Phytol, 79, 95–106.

    Article  CAS  Google Scholar 

  • Borkert, C. N., Cox, F. R., & Tucker M. R. (1988). Zinc and copper toxicity in peanut, soybean, rice and corn in soil mixtures. Communications in Soil Science and Plant Analysis, 29, 2991–3005.

    Google Scholar 

  • Breckle, S. W., & Kahle, H. (1992). Effects of toxic heavy metals (Cd, Pb) on growth and mineral nutrition of beech. Vegetation, 101, 43–53.

    Article  Google Scholar 

  • Cacador, I, Vale, C., & Catarino, F. (2000). Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root sediment system of Spartina maritima and Halimone partulacoides from Tagus estuary salt marshes. Marine Environmental Research, 49, 279–290.

    Article  CAS  Google Scholar 

  • Cohen-Shoel, N., Barkay, Z., Ilzycer, D., Gilath, L., & Tel-Or, E. (2002). Biofiltration of toxic elements by Azolla biomass. Water, Air, and Soil Pollution, 135, 93–104.

    Article  CAS  Google Scholar 

  • Cordwell, A. J., Hawker, D. W., & Greenway, M. (2002). Metal accumulation in aquatic macrophytes fron southeast Queensland, Australia. Chemosphere, 48, 653–663.

    Article  Google Scholar 

  • Das, P., Samantary, S., & Rout, G. R. (1997). Studies on cadmium toxicity in plants: A review. Environmental Pollution, 98, 29–36.

    Article  CAS  Google Scholar 

  • Davies, F. T., Puryear, J. D., Newton, R. J., Egilla, J. N., & Grossi J. A. S. (2002). Mycorrhizal fungi increase chromium uptake by sunflower plants: Influence on tissue mineral concentration, growth, and gas exchange. Journal of Plant Nutrition, 25, 2389–2407.

    Article  CAS  Google Scholar 

  • De, A. K. (2004). Environmental chemistry. Daryaganj, New Delhi: New Age International.

    Google Scholar 

  • Dietz, K. J., Tavakoli, N., Kluge, C., Mimura, T., Sharma, S. S., & Harris, G. C. (2001). Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. Journal of Experimental Botany, 52, 1969–1980.

    Article  CAS  Google Scholar 

  • Dushenkov, V., Kumar, P. B. A. N., Motto, H., & Raskin, I. (1995). Rhizofilteration the use of plants to remove heavy metals from aqueous streams. Environmental Science & Technology, 29, 1239–1245.

    Article  CAS  Google Scholar 

  • EMP Bina (2004). Environmental Management Plan of Bina Coalmine Project, Northern Coalfields Ltd. India.

  • Ewais, E. A. (1997). Effects of cadmium, nickel and lead on growth, chlorophyll content and proteins of weeds. Biologia Plantarum, 39, 403–410.

    Article  CAS  Google Scholar 

  • Fitzgerald, E. J., Caffrey, J. M., Neasaratnam, S. T., & McLoughlim, P. (2003). Copper and lead concentration in salt marsh plants on the Suir Estuary, Ireland. Environmental Pollution, 123, 67–74.

    Article  CAS  Google Scholar 

  • Fogarty, R. V., Dostalek, P., Patzak, M., Votruba, J., Tel-Or, E., & Tobin, J. M. (1999). Metal removal by immobilized and non-immobilized Azolla filiculoides. Biotechnology Techniques, 13, 53–538.

    Article  Google Scholar 

  • Forstner, U., & Wittmann, G. T. W. (1979). Metal pollution in the aquatic environment. Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Fritioff, A., Kautsky, L., & Greger M. (2005). Influence of temp. and salinity on heavy metal uptake by submersed plants. Environmental Pollution, 133, 265–274.

    Article  CAS  Google Scholar 

  • Gaur, J. P., Noraho, N., & Chauhan, Y. S. (1994). Relationship between heavy metal accumulation and toxicity in Spirodela polyrhiza (L.) Schleid. and Azolla pinnata R. Br. Aquatic Botany, 49, 183–192.

    Article  CAS  Google Scholar 

  • Gaur, S., Singhal, P. K., & Hasija, S. K. (1992). Relative contributions of bacteria and fungi to water hyacinth decomposition. Aquatic Botany, 43, 1–15.

    Article  Google Scholar 

  • Haider, S. Z., Malik, K. M., Rahman, M. M., & Ali, M. A. (1983). Pollution Control by water hyacinth. In G. Thyagarajan (Ed.), Proceedings of the International Conference on Water hyacinth (pp. 627–634). India: Hyderabad.

    Google Scholar 

  • Jackson, M. L. (1962). Soil chemical analysis, Inc. (pp. 183–190). Englewood Cliffs, New Jersey, USA: Prentice Hall.

    Google Scholar 

  • Kaufaman, D. B. (1970). Acute potassium dichromate poisoning in man. American Journal of Diseases of Children, 119, 374–379.

    Google Scholar 

  • Kelly, C., Mielke, R. E., Dimaquabo, D., Curtis, A. J., & Dewitt, J. G. (1999). Adsorption of Eu (III) onto roots of water hyacinth. Environmental Science & Technology, 33, 1439–1443.

    Article  Google Scholar 

  • Landberg, T., & Greger, M. (1996). Difference in uptake and tolerance to heavy metal in Salix from unpolluted and polluted areas. Applied Geochemistry, 11, 175–180.

    Article  CAS  Google Scholar 

  • Long, X. X., Yang, X. E., Ni, W. Z., Ye, Z. Q., He, Z. L., Calvert, D. V., et al. (2003). Assessing zinc thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. Communications in Soil Science and Plant Analysis, 34, 1421–1434.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebraugh, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin–phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Lytle, M. C., Lytle, F. W., Yang, N., Qian, J., Hansen, D., & Zayed, A. (1998). Reduction of Cr (VI) to Cr (III) by wetland plants: Potential for in situ heavy metal detoxification. Environmental Science & Techology, 32, 3087–3093.

    Article  CAS  Google Scholar 

  • Mallick, N., Shardendu, & Rai, L. C. (1996). Removal of heavy metals by two free floating aquatic macrophytes. Biomedical and Environmental Sciences, 9(4), 399–407.

    CAS  Google Scholar 

  • Manios, T., Stentiford, E. I., & Millner, P. A. (2003). The effects of heavy metal accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water. Ecological Engineering, 20, 65–74.

    Article  Google Scholar 

  • Mendelssohn, I. A., McKee, K. L., & Kong, T. (2001). A comparison of physiological indicators of sublethal cadmium stress in wetland plants. Environmental and Experimental Botany, 46, 263–275.

    Article  CAS  Google Scholar 

  • Mireles, A., Solis, C., Andrade, E., Lagunas-Solar, M., Pina, C., & Flocchini, R. G. (2004). Heavy metal accumulation in plants and soil irrigated with wastewater from Mexico City. Nuclear Instruments & Methods in Physics Research B, 1 (219–220), 187–190.

    Article  CAS  Google Scholar 

  • Mo, S. C., Choi, D. S., & Robinson, J. W. (1988). A study of the uptake by duckweed of aluminium, copper and lead from aqueous solution. Journal of Environmental Science and Health, 23(2), 139–156.

    Google Scholar 

  • Muramoto, S., & Oki, Y. (1983). Removal of some heavy metals from polluted water by water hyacinth (Eichhornia crassipes). Bulletin of Environmental Contamination and Toxicology, 30, 170–177.

    Article  CAS  Google Scholar 

  • Murozono, K., Ishii, K., Yamazaki, H., Matsuyama, S., & Iwasaki, S. (1999). PIXE spectrum analysis taking into account bremsstrahlung spectra. Nuclear Instruments & Methods in Physics Research B, 150, 76–82.

    Article  CAS  Google Scholar 

  • Nalewajko, C. (1995). Effects of cadmium and metal contaminated sediments on photosynthesis, heterophy and phosphate uptake in Mackenzie river delta phytoplankton. Chemosphere, 30, 1401–1414.

    Article  CAS  Google Scholar 

  • Noraho, N., & Gaur J. P. (1996). Cadmium adsorption and intracellular uptake by two macrophytes, Azolla pinnata and Spirodela polyrhiza. Archiv fuer Hydrobiologie, 136(1), 135–144.

    CAS  Google Scholar 

  • Padinha, C., Santos, R., & Brown, M. T. (2000). Evaluating environmental contamination in Ria Formosa (Portugal) using stress indexes of Spartina maritime. Marine Environmental Research, 49, 67–78.

    Article  CAS  Google Scholar 

  • Peach, K., & Tracey M. V. (1956). Modern methods of plant analysis, Vol. 1. Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Peverly, J. H., Surface, J. M., & Wang, T. (1995). Growth and trace metal absorption by Phragmites australis in wetlands constructed for landfill leachate treatment. Ecological Engineering, 5, 21–35.

    Article  Google Scholar 

  • Prasad, M. N. V., & de Oliveira Freitas, H. M. (2003). Metal hyperaccumulation in plants-biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6(3), 1–21.

    Google Scholar 

  • Rahmani, G. N. H., & Sternberg, S. P. K. (1999). Bioremoval of lead from water using Lemna minor. Bioresource Technology, 70, 225.

    Article  CAS  Google Scholar 

  • Samecka-Cymerman, A., & Kempers, A. J. (2001). Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Science of the Total Environment, 281, 87–98.

    Article  CAS  Google Scholar 

  • Shen, Z. G., & Liu,Y. L. (1998). Progress in the study on the plants that hyperaccumulate heavy metal. Plant Physiology Communications, 34, 133–139.

    Google Scholar 

  • Smith, R. G., & Lec, D. H. K. (1972). Chromium in metallic contaminants and human health. New York: Academic.

    Google Scholar 

  • Spearot, R. M., & Peck, J. R. (1984). Recovery process for complexed copper bearing rinse waters. Environmental Progress, 3, 124–129.

    Article  CAS  Google Scholar 

  • Standard Methods for Examination of Water and Wastewater (1995). American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Washington, D.C.

  • Technical Report of Khadia Coal Mine (2005). Environmental Management Plan of Khadia Coalmine Project, Northern Coalfields Ltd. India.

  • Tordoff, G. M., Baker, A. J. M., & Willis, A. J. (2000). Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere, 41, 219–228.

    Article  CAS  Google Scholar 

  • Upadhyay, Alka, R., Mishra, V. K., & Rai, P. K. (2006). Biofiltration of wastewaters contaminated with mining effluent. In proceedings of Environ.Manag. challenges in 21st century. Department of Botany, B.H.U., Varanasi, India.

  • Vesk, P. A., Nockolds, C. E., & Allaway, W. G. (1999). Metal localization in water hyacinth roots from an urban wetland. Plant Cell & Environment, 22, 149–158.

    Article  Google Scholar 

  • William, J. B. (2002). Phytoremediation in wetland ecosystem: Progress, problems and potential. Critical Reviews in Plant Sciences, 21, 607–635.

    Article  Google Scholar 

  • Windham, L., Weis, J. S., & Weis, P. (2002). Patterns of decomposition and metal uptake of plant litter of Spartina alterniflora and Pharagmites australis in an urban estuary. SETAC Annual Meeting Presentation, Nov. 16–20 Salt Lake City, UT.

  • Winterbourn, M. J., McDiffett, W. F., & Eppley, S. J. (2000). Aluminium and iron burdens of aquatic biota in New Zealand streams contaminated by acid mine drainage: Effects of trophic level. Science of the Total Environment, 254, 45–54.

    Article  CAS  Google Scholar 

  • Wolverton, B. C., & McDonald, R. C. (1976). Water hyacinth for removing chemicals and pollutants from laboratory wastewater. NASA. Technical Memorandum.

  • Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50(6), 775–780.

    Article  CAS  Google Scholar 

  • Yahya, M. N. (1990). The absorption of metal ions by Eichhornia crassipes. Chemical Speciation and Bioavailability, 2, 82–91.

    Google Scholar 

  • Ye, Z. H., Whiting, S. N., Lin, Z. Q., Lytle, C. M., Qian, J. H., & Terry, N. (2001). Removal and distribution of iron, manganese, cobalt and nickel within a Pennsylvania constructed wetland treating coal combustion by product leachate. Journal of Environmental Quality, 30, 1464–1473.

    Article  CAS  Google Scholar 

  • Zaranyika, M. F., & Ndapwadza, T. (1995). Uptake of Ni, Zn, Fe, Co, Cr, Pb, Cu and Cd by water hyacinth in Mukuvisi and Manyame rivers, Zimbabwe. Journal of Environmental Science and Health A, 30, 157–169.

    Article  Google Scholar 

Download references

Acknowledgment

Authors are thankful to Council of Scientific and Industrial Research, New Delhi for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alka R. Upadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upadhyay, A.R., Tripathi, B.D. Principle and Process of Biofiltration of Cd, Cr, Co, Ni & Pb from Tropical Opencast Coalmine Effluent. Water Air Soil Pollut 180, 213–223 (2007). https://doi.org/10.1007/s11270-006-9264-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-006-9264-1

Keywords

Navigation