Skip to main content
Log in

Influence of Freshwater Sediment Characteristics on Persistence of Fecal Indicator Bacteria

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Extended persistence of enteric bacteria in coastal sediments and potential remobilization of pathogens during natural turbulence or human activities may induce an increased risk of human infections. In this study, the effect of sediment characteristics such as particle grain size and nutrient and organic matter contents on the survival of fecal indicator bacteria (FIB) including total coliforms, Escherichia coli, and Enterococcus was investigated. The experimentation was carried out for 50 days in microcosms containing lake water and different contaminated freshwater sediments in continuous-flow and batch conditions. Results of this study revealed: (1) extended FIB survival in sediments up to 50 days, (2) higher growth and lower decay rates of FIB in sediments with high levels of organic matter and nutrients and small (mainly silt) grain size, and (3) longer survival of Enterococcus sp. compared to E. coli and total coliforms. FIB survival in sediments and possible resuspension are of considerable significance for the understanding of permanent microbial pollution in water column and therefore human risk during recreational activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alm, E. W., Burke, J., & Spain, A. (2003). Fecal indicator bacteria are abundant in wet sand and freshwater beaches. Water Research, 37, 3978–3982. doi:10.1016/S0043-1354(03)00301-4.

    Article  Google Scholar 

  • An, Y., Kampbell, D. H., & Breidenbach, G. P. (2002). Escherichia coli and total coliforms in water and sediments at lake marinas. Environmental Pollution, 120, 771–778.

    CAS  Google Scholar 

  • Anderson, L. K., Whitlock, J. E., & Harwood, V. J. (2005). Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Applied &. Environmental Microbiology, 71, 3041–3048. doi:10.1128/AEM.71.6.3041-3048.2005.

    Article  CAS  Google Scholar 

  • Ashbolt, N. J., Grohmann, G. S., & Kueh, C. (1993). Significance of specific bacterial pathogens in the assessment of polluted receiving waters to Sydney. Water Science & Technology (Elmsford, N.Y.), 27, 449–452.

    Google Scholar 

  • Balkwill, D. L., & Ghiorse, W. C. (1985). Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma. Applied & Environmental Microbiology, 50, 580–588.

    Google Scholar 

  • Burton, G., Gunnison, D., & Lanza, G. (1987). Survival of pathogenic bacteria in various freshwater sediments. Applied &. Environmental Microbiology, 53, 633–638.

    Google Scholar 

  • Burrus, D., Thomas, R. L., Dominik, B., Vernet, J. P., & Dominik, J. (1990). Characteristics of suspended sediment in the Upper Rhone River, Switzerland, including the particulate forms of phosphorus. Hydrological Processes, 4, 85–98. doi:10.1002/hyp.3360040108.

    Article  Google Scholar 

  • Craig, D. L., Fallowfield, H. J., & Cromar, N. J. (2004). Use of microcosms to determine persistence of Escherichia coli in recreational coastal water and sediment and validation with in situ measurements. Journal & Applied Microbiology, 96, 922–930. doi:10.1111/j.1365-2672.2004.02243.x.

    Article  CAS  Google Scholar 

  • Davies, C. M., & Evison, L. M. (1991). Sunlight and the survival of enteric bacteria in natural waters. The Journal of Applied Bacteriology, 70, 265–274.

    CAS  Google Scholar 

  • Davies, C., & Bavor, H. (2000). The fate of storm-water associated bacteria in constructed wetland and water pollution control pond systems. Journal of Applied Microbiology, 89, 349–360. doi:10.1046/j.1365-2672.2000.01118.x.

    Article  CAS  Google Scholar 

  • Davies, C. M., Long, J. A. H., Donald, M., & Ashbolt, N. (1995). Survival of fecal microorganisms in marine and freshwater sediments. Applied & Environmental Microbiology, 61, 1888–1896.

    CAS  Google Scholar 

  • EU (2006). European directive 2006/7/CE of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC.

  • Evanson, M., & Ambrose, R. F. (2006). Sources and growth dynamics of fecal indicator bacteria in a coastal wetland system and potential impacts to adjacent waters. Water Research, 40, 475–486. doi:10.1016/j.watres.2005.11.027.

    Article  CAS  Google Scholar 

  • Fish, J. T., & Pettibone, G. W. (1995). Influence of freshwater sediment on the survival of Escherichia coli and Salmonella sp. as measured by three methods of enumeration. Letters in Applied Microbiology, 20, 277–281. doi:10.1111/j.1472-765X.1995.tb00445.x.

    Article  CAS  Google Scholar 

  • Gerba, C., & McLeod, J. S. (1976). Effect of sediment on the survival of Escherichia coli in marine water. Applied & Environmental Microbiology, 32, 114–120.

    CAS  Google Scholar 

  • Ghoul, M., Bernard, T., & Cormier, M. (1990). Evidence that Escherichia coli accumulates glycine betaine from marine sediments. Applied & Environmental Microbiology, 56, 551–554.

    CAS  Google Scholar 

  • Goldscheider, N., Haller, L., Poté, J., Wildi, W., & Zopfi, J. (2007). Characterizing water circulation and contaminant transport in Lake Geneva using bacteriophage tracer experiments and limnological methods. Environmental Science & Technology (Elmsford, N.Y.), 41, 5252–5258. doi:10.1021/es070369p.

    Article  CAS  Google Scholar 

  • Hanes, N. B., & Fragala, C. (1967). Effect of seawater concentration on the survival of indicator bacteria. Journal—Water Pollution Control Federation, 39, 97–104.

    CAS  Google Scholar 

  • Hughes, K. A. (2003). Influence of seasonal environmental variables on the distribution of presumptive fecal coliforms around an Antarctic research station. Applied & Environmental Microbiology, 69, 4884–4891. doi:10.1128/AEM.69.8.4884-4891.2003.

    Article  CAS  Google Scholar 

  • Kjeldhal, J. (1883). A new method for the determination of nitrogen in organic matter. Zeitschrift fur Analytische Chemie, 22, 366. doi:10.1007/BF01338151.

    Article  Google Scholar 

  • LaLiberte, P., & Grimes, D. J. (1982). Survival of Escherichia coli in lake bottom sediment. Applied and Environmental Microbiology, 43, 623–628.

    CAS  Google Scholar 

  • Lee, C. M., Lin, T. Y., Lin, C., Kohbodi, G. A., Bhatt, A., Lee, R., et al. (2006). Persistence of fecal indicator bacteria in Santa Monica Bay beach sediments. Water Research, 40, 2593–2602. doi:10.1016/j.watres.2006.04.032.

    Article  CAS  Google Scholar 

  • Lleò, M. M., Bonato, B., Benedetti, D., & Canepari, P. (2005). Survival of enterococcal species in aquatic environments. FEMS Microbiology Ecology, 54, 189–196. doi:10.1016/j.femsec.2005.03.016.

    Article  Google Scholar 

  • Loizeau, J.-L., Arbouillle, D., Santiago, S., & Vernet, J.-P. (1994). Evaluation of a wide range laser diffraction grain size analyser for use with sediments. Sedimentology, 41, 353–361. doi:10.1111/j.1365-3091.1994.tb01410.x.

    Article  Google Scholar 

  • Loizeau, J.-L., Pardos, M., Monna, F., Peytremann, C., Haller, L., & Dominik, J. (2004). The impact of a sewage treatment plant’s effluent on sediment quality in a small bay in Lake Geneva (Switzerland-France). Part 2: Temporal evolution of heavy metals. Lakes and Reservoirs: Research and Management, 9(1), 53–63. doi:10.1111/j.1440-1770.2004.00234.x.

    Article  CAS  Google Scholar 

  • McFeters, G. A., & Singh, A. (1991). Effects of aquatic environmental stress on enteric bacteria. The Journal of Applied Bacteriology, 66, 559–569.

    Google Scholar 

  • Noble, R. T., Moore, D. F., Leecaster, M. K., McGee, C. D., & Welsberg, S. B. (2003). Comparison of total coliform, fecal coliform, and enterococcus bacterial indicator response for ocean recreational water quality testing. Water Research, 37, 1637–1643. doi:10.1016/S0043-1354(02)00496-7.

    Article  CAS  Google Scholar 

  • OHyg (Ordonnance du DFI sur l’hygiène) (2005). Ordonnance sur les denrées alimentaires et les objets usuels (ODIOUS). Berne: Le Département fédéral de l’intérieur (DFI).

    Google Scholar 

  • Thomas, C., Hill, D. J., & Mabey, M. (1999). Evaluation of the effect of temperature and nutrients on the survival of Campylobacter spp. in water microcosms. Journal of Applied Microbiology, 86, 1024–1032. doi:10.1046/j.1365-2672.1999.00789.x.

    Article  CAS  Google Scholar 

  • Poté, J., Goldscheider, N., Haller, L., Zopfi, J., Khajehnouri, F., & Wildi, W. (2008a). Origin and spatial–temporal distribution of fecal bacteria in a bay of Lake Geneva, Switzerland. Environmental Monitoring and Assessmentdoi:10.1007/s10661-008-0401-8.

  • Poté, J., Haller, L., Loizeau, J.-L., Garcia Bravo, A., Sastre, V., & Wildi, W. (2008b). Effects of a sewage treatment plant outlet pipe extension on the distribution of contaminants in the sediments of the Bay of Vidy, Lake Geneva, Switzerland. Bioresource Technology, 99, 7122–7131. doi:10.1016/j.biortech.2007.12.075.

    Article  Google Scholar 

  • Sinton, L., Finlay, R., & Lynch, P. (1999). Sunlight inactivation of fecal bacteriophages and bacteria in sewage-polluted seawater. Applied and Environmental Microbiology, 66, 230–237.

    Google Scholar 

  • Tallon, P., Magajna, B., Lofranco, C., & Leung, K. T. (2005). Microbial indicators of faecal contamination in water: a current perspective. Water, Air, and Soil Pollution, 166, 139–166. doi:10.1007/s11270-005-7905-4.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (2000). Improved enumeration methods for the recreational water quality indicators: enterococci and Escherichia coli EPA-821/R-97/004. Washington, D.C.: US Environmental Protection Agency.

    Google Scholar 

  • Wildi, W., Dominik, J., Loizeau, J. L., Thomas, R. L., Favarger, P.-Y., Haller, L., et al. (2004). River, reservoir and lake sediment contamination by heavy metals downstream from urban areas of Switzerland. Lakes & Reservoirs: Research & Management, 9, 75–87.

    Article  CAS  Google Scholar 

  • Williams, J. D. H., Jaquet, J. M., & Thomas, R. L. (1976). Forms of phosphorus in the superficial sediments of Lake Erie. Journal of the Fisheries Research Board of Canada, 33, 413–429.

    CAS  Google Scholar 

Download references

Acknowledgement

We thank Vincent Sastre for navigating the boat during the sampling phase, Benoît Ferrari and Régis Kottelat, for their precious help for the setting up and handling of the microcosms and Jean-Luc Loizeau for reviewing all the statistical analyses. Part of this study was funded by the Ernst and Lucie Schmidheiny Foundation, Geneva, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Haller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haller, L., Amedegnato, E., Poté, J. et al. Influence of Freshwater Sediment Characteristics on Persistence of Fecal Indicator Bacteria. Water Air Soil Pollut 203, 217–227 (2009). https://doi.org/10.1007/s11270-009-0005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0005-0

Keywords

Navigation