Skip to main content
Log in

Adsorption Isotherms and Breakthrough Curves to Study How Humic Acids Influence Heavy Metal–Soil Interactions

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

In the present work we studied the role of humic acids in the heavy metal–soil interaction after the addition of different amounts of humic acids to a soil poor in organic matter. Both adsorption isotherms and breakthrough curves of cadmium(II) and nickel(II) were examined. Using the multi-method approach it is possible to obtain a greater amount of information than that obtained by employing only adsorption isotherms or breakthrough curves. Both methods show that the amount of cadmium retained by the soil is greater than that of nickel and that the two metals are characterised by different sorption mechanisms. Moreover, adsorption isotherms evidence the humic acids–soil interaction whereas breakthrough curves indicate that two different types of sites or two different mechanisms are involved in the sorption process. For nickel humic acid addition increases only the metal fraction strongly bound to the soil, whereas for cadmium both fractions (strongly bound and weakly bound) increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aiken, G. R., McKnight, D. M., & Wershaw, R. L. (1985). Humic substances in soil sediment and water. New York: Wiley.

    Google Scholar 

  • Alloway, B. J. (1995). Heavy metals in soils. Blackie Academic and Professional: Glasgow.

    Google Scholar 

  • Altin, O., Ötzbelge, H. O., & Dogut, T. (1998). Use of general adsorption isotherms for heavy metal-clay mineral interactions. Journal of Colloid & Interface Science, 198, 130–140. doi:10.1006/jcis.1997.5246.

    Article  Google Scholar 

  • Bak, J., Jensen, J., Larsen, M., Pritzl, G., & Scott-Fordsmand, J. J. (1997). A heavy metal monitoring programme in Denmark. The Science of the Total Environment, 207, 179–186. doi:10.1016/S0048-9697(97)00262-3.

    Article  CAS  Google Scholar 

  • Barrow, N. J., Brümmer, G. W., & Strauss, R. (1993). Effects of surface heterogeneity on ion adsorption by metal oxides and by soils. Langmuir, 9, 2606–2611. doi:10.1021/la00034a020.

    Article  CAS  Google Scholar 

  • Blevius, R. L., Thomas, G. W., Smith, M. S., Frye, W. W., & Cornelius, P. L. (1983). Change in soil properties after 10 years continuous non-tilled and conventionally tilled coen. Soil & Tillage Research, 3, 135–146. doi:10.1016/0167-1987(83)90004-1.

    Article  Google Scholar 

  • Bose, P., & Reckhow, D. A. (1998). Adsorption of natural organic matter on preformed aluminum hydroxide flocs. Journal of Environmental Engineering, 124, 803–811. doi:10.1061/(ASCE)0733-9372(1998)124:9(803).

    Article  CAS  Google Scholar 

  • Brown, P. H., Welch, R. H., & Carry, E. E. (1987). Nickel: a micronutrient essential for higher plants. Plant Physiology, 85, 801–803. doi:10.1104/pp.85.3.801.

    Article  CAS  Google Scholar 

  • Brummer, G. W. (1986). Heavy metal species, mobility and availability in soils. In M. Berhard, F. E. Brinckman & J. P. Sadler (Eds.), The importance of Chemical Speciation in Environmental processes, pp. 169–192. Springer: Berlin.

    Google Scholar 

  • Calace, N., Petronio, B. M., & Pietroletti, M. (2006). Metal bioavailability: how does its significance change in the time? Annali di Chimica (Rome), 96, 131–136. doi:10.1002/adic.200690013.

    Article  CAS  Google Scholar 

  • Chang, S., & Berner, R. A. (1998). Humic substances formation via the oxidative weathering of coal. Environmental Science & Technology, 32, 2883–2886. doi:10.1021/es9802504.

    Article  CAS  Google Scholar 

  • Datta, A., Sanyal, S. K., & Saha, S. (2001). A study on natural and synthetic humic acids and their complexing ability towards cadmium. Plant & Soil, 235, 115–125. doi:10.1023/A:1011842019753.

    Article  CAS  Google Scholar 

  • Evangelou, V. P., Marsi, M., & Vandiviere, M. M. (1999). Stability of Ca2+-, Cd2+- Cu2+-[illite-humic] complexes and pH influence. Plant & Soil, 213, 63–74. doi:10.1023/A:1004561619717.

    Article  CAS  Google Scholar 

  • Evangelou, M. V. H., Daghan, H., & Schaeffer, A. (2004). The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere, 57, 207–213. doi:10.1016/j.chemosphere.2004.06.017.

    Article  CAS  Google Scholar 

  • Evans, L. J. (1989). Chemistry and metal retention by soils. Environmental Science & Technology, 23, 1046–1056. doi:10.1021/es00067a001.

    Article  CAS  Google Scholar 

  • Gardea-Torresdey, J. L., Tang, L., & Salvador, J. M. (1996). Copper adsorption by esterified and unesterified fractions of Sphagnum peat moss and its different humic substances. Journal of Hazardous Materials, 48, 191–206. doi:10.1016/0304-3894(95)00156-5.

    Article  CAS  Google Scholar 

  • Halen, H., van Bladel, R., & Gloos, P. (1991). pH dependence of copper, zinc and cadmium adsorption by some soils and clay minerals. Pédologie (Gent), 40, 47–68.

    Google Scholar 

  • Halim, M., Conte, P., & Piccolo, A. (2003). Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere, 52, 265–275. doi:10.1016/S0045-6535(03)00185-1.

    Article  CAS  Google Scholar 

  • Hickey, M. G., & Kittrich, J. A. (1984). Chemical partitioning of cadmium, copper nickel and zinc in soil and sediments containing high levels of heavy metals. Journal of Environmental Quality, 13, 372–376.

    Article  CAS  Google Scholar 

  • Kaiser, K., & Guggenberger, G. (2000). The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochemistry, 31, 711–725. doi:10.1016/S0146-6380(00)00046-2.

    Article  CAS  Google Scholar 

  • Kinniburg, D. G. (1986). General purpose adsorption isotherms. Environmental Science & Technology, 20, 895–904. doi:10.1021/es00151a008.

    Article  Google Scholar 

  • Koopal, L. K., Von Riemsdijk, W. H., De Witt, J. M. C., & Benedetti, M. F. (1994). Analytical isotherm equations for multicomponents adsorption to heterogeneous surfaces. Journal of Colloid & Interface Science, 166, 51–60. doi:10.1006/jcis.1994.1270.

    Article  CAS  Google Scholar 

  • Kretzschmar, R., & Sticher, H. (1997). Transport of humic-coated iron oxide colloids in a sandy soil. Influence of Ca2+ and trace metals. Environment Science & Technology, 31, 3497–3504. doi:doi:10.1021/es970244s.

    Article  CAS  Google Scholar 

  • Meier, M., Namjesnik-dDejanovic, K., Maurice, P. A., Chin, Y.-P., & Aiken, G. R. (1999). Fractionation of aquatic natural organic matter upon sorption to goethite and kaolinite. Chemical Geology, 157, 275–284. doi:10.1016/S0009-2541(99)00006-6.

    Article  CAS  Google Scholar 

  • Ochs, M., Cosovic, B., & Stumm, W. (1994). Coordinative and hydrophobic interaction of humic substances with hydrophilic Al2O3 and hydrophobic mercury surfaces. Geochimica et Cosmochimica Acta, 58, 639–350. doi:10.1016/0016-7037(94)90494-4.

    Article  CAS  Google Scholar 

  • Murphy, E. M., & Zachara, J. M. (1995). The role of sorbed humic substances on the distribution of organic and inorganic contaminants in groundwater. Geoderma, 67, 103–124.

    Article  CAS  Google Scholar 

  • Rashid, M. A., & King, L. H. (1969). Molecular weight distribution measurements of humic and fulvic acid fractions from marine clay on the Scotian Shelf. Geochimica et Cosmochimica Acta, 33, 147–151. doi:10.1016/0016-7037(69)90099-4.

    Article  CAS  Google Scholar 

  • Schnitzer, M. (1986). Binding of humic substances by soil mineral colloids. In: Interaction of Soil Minerals with Natural Organics and Microbes, Soil Science Society of America Special Publication N. 17, Soil Science Society of America 71-101.

  • Schnitzer, M. (1995). Organic-inorganic interactions in soil and their effects on soil quality. Boca Raton, Florida: Lewis Publishers. In Soil Component Interaction.

    Google Scholar 

  • Senesi, N., Sposito, G., Holtzclaw, K. M., & Bradford, G. R. (1989). Chemical properties of metal-humic acid fractions of sludge-amended sewage Aridisol. Journal of Environmental Quality, 18, 189–194.

    Google Scholar 

  • Shen, Y. H. (1999). Sorption of humic acids to soil: the role of soil mineral composition. Chemosphere, 38, 2489–2499. doi:10.1016/S0045-6535(98)00455-X.

    Article  CAS  Google Scholar 

  • Siripinyanond, A., Worapanyamond, S., & Shiowatana, J. (2005). Field-flow fractionation-inductively coupled plasma mass spectrometry: an alternative approach to investigate metal-humic substances interaction. Environmental Science & Technology, 39, 3295–3301. doi:10.1021/es0483802.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (2001). Elucidating the fundamental chemistry of soils: past and recent achievements and future frontiers. Geoderma, 100, 303–319. doi:10.1016/S0016-7061(01)00026-X.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. (1994). Humus chemistry, genesis, composition and reactions. New York: Wiley.

    Google Scholar 

  • Tarchitzky, J., Chen, Y., & Banin, A. (1993). Humic substances and pH effect on sodium- and calcium-montmorillonite flocculation and dispersion. Soil Science Society of America Journal, 57, 367–372.

    CAS  Google Scholar 

  • Tiller, K. G., & Smith, L. H. (1990). Limitations of EGME retention to estimate surface area of soils. Australian Journal of Soil Science, 28, 1–26. doi:10.1071/SR9900001.

    Article  Google Scholar 

  • Tipping, E., & Higgins, D. C. (1982). The effect of adsorbed humic substances on the colloid stability of haematite particles. Colloids and Surfaces, 5, 85–92. doi:10.1016/0166-6622(82)80064-4.

    Article  CAS  Google Scholar 

  • Verkleij, J., & Scat, H. (1990). Mechanism of tolerance in higher plants: heavy metal tolerance in plants. In A. J. Shaw (Ed.), Evolutionary aspects, pp. 179–193. New York: CCR Press.

    Google Scholar 

  • Wilkens, B. J., & Loch, J. P. G. (1997). Accumulation of cadmium and zinc from diffuse immission on acid sandy soils, as a function of soil composition. Water, Air, and Soil Pollution, 96, 1–16.

    CAS  Google Scholar 

  • Wu, J., West, L. J., & Stewart, D. I. (2002). Effect of humic substances on Cu(II) solubility in caolin-sand soil. Journal of Hazardous Materials, B94, 223–238. doi:10.1016/S0304-3894(02)00082-1.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Ministry of the University and Scientific and Technological Research (MURST, COFIN 2004)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Petronio.

Additional information

Capsule

Humic acids addition to soil poor in organic matter increases heavy metal retention of soil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calace, N., Deriu, D., Petronio, B.M. et al. Adsorption Isotherms and Breakthrough Curves to Study How Humic Acids Influence Heavy Metal–Soil Interactions. Water Air Soil Pollut 204, 373–383 (2009). https://doi.org/10.1007/s11270-009-0051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0051-7

Keywords

Navigation