Skip to main content
Log in

Photocatalytic Degradation of Azo Dye Reactive Orange 16 by TiO2

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Photocatalytic degradation of hydrolyzed reactive orange 16 (RO16) using titanium dioxide (TiO2) was analyzed in our study. The effects of various parameters, such as photocatalyst amount, RO16 concentration, light intensity, and temperature on photocatalytic degradation were investigated. Decolorization of hydrolyzed RO16 resulted in an decreasing of toxicity (EC50 = 76.54 ± 2.16). It was found that the decolorization efficiency was 87% after 20-min reaction and 100% after 80-min reaction. The total mineralization was 70% after 20 min and nearly 100% after 120 min, respectively. The results indicate that color degradation was faster than the decrease of total organic carbon. The photocatalytic degradation process was well described by first-order reaction. The final mineralization product was acetamide and the intermediate products were identified by gas chromatography–mass spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chatterjee, D., Patnam, V. R., Sikdar, A., Joshi, P., Misra, R., & Rao, N. N. (2008). Kinetics of the decoloration of reactive dyes over visible light-irradiated semiconductor photocatalyst. Journal of Hazardous Materials, 156, 435–441. doi:10.1016/j.jhazmat.2007.12.038.

    Article  CAS  Google Scholar 

  • Chen, D., & Ray, A. K. (1998). Photodegradation kinetics of 4-nitrophenol in TiO2 suspension. Water Research, 32, 3223–3234. doi:10.1016/S0043-1354(98)00118-3.

    Article  CAS  Google Scholar 

  • Chen, C. C., Fan, H. J., Jang, C. Y., Jan, J. L., Lin, H. D., & Lu, C. S. (2006). Photooxidative N-de-methylation of crystal violet dye in aqueous nano-TiO2 dispersions under visible light irradiation. Journal of Photochemistry and Photobiology A Chemistry, 184, 147–154. doi:10.1016/j.jphotochem.2006.04.008.

    Article  CAS  Google Scholar 

  • Erdemoglu, S., Aksu, S. K., Sayilkan, F., Izgi, B., Asilturk, M., Sayilkan, H., et al. (2008). Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline TiO2 and identification of degradation products by LC-MS. Journal of Hazardous Materials, 155, 469–476. doi:10.1016/j.jhazmat.2007.11.087.

    Article  CAS  Google Scholar 

  • Farah, J. Y., EI-Gendy, N. S., & Farahat, L. A. (2007). Biosorption of Astrazone Blue basic dye from an aqueous solution using dried biomass of Baker’s yeast. Journal of Hazardous Materials, 148, 402–408. doi:10.1016/j.jhazmat.2007.02.053.

    Article  CAS  Google Scholar 

  • Fernandez-Alba, A. R., Hernando, D., Aguera, J., Caceres, J., & Malato, S. (2002). Toxicity assays: A way for evaluating AOPs efficiency. Water Research, 36, 4255–4262. doi:10.1016/S0043-1354(02)00165-3.

    Article  CAS  Google Scholar 

  • González, A. S., & Martínez, S. S. (2008). Study of the sonophotocatalytic degradation of basic blue 9 industrial textile dye over slurry titanium dioxide and influencing factors. Ultrasonics Sonochemistry, 15, 1038–1042. doi:10.1016/j.ultsonch.2008.03.008.

    Article  Google Scholar 

  • Gottlieb, A., Shaw, C., Smith, A., Wheatley, A., & Forsythe, S. (2003). The toxicity of textile reactive azo dyes after hydrolysis and decolourisation. Journal of Biotechnology, 101, 49–56. doi:10.1016/S0168-1656(02)00302-4.

    Article  CAS  Google Scholar 

  • Habibi, M. H., & Talebian, N. (2007). Photocatalytic degradation of an azo dye X6G in water: A comparative study using nanostructured indium tin oxide and titanium oxide thin films. Dyes and Pigments, 73, 186–194. doi:10.1016/j.dyepig.2005.11.006.

    Article  CAS  Google Scholar 

  • He, Z., Song, S., Zhou, H., Ying, H., & Chen, J. (2007). C.I. Reactive black 5 decolorization by combined sonolysis and ozonation. Ultrasonics Sonochemistry, 14, 298–304. doi:10.1016/j.ultsonch.2006.09.002.

    Article  CAS  Google Scholar 

  • Ioannis, K. K., & Triantafyllos, A. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Applied Catalysis B Environmental, 49, 1–14. doi:10.1016/j.apcatb.2003.11.010.

    Article  Google Scholar 

  • Kansal, S. K., Singh, M., & Sud, D. (2007). Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. Journal of Hazardous Materials, 141, 581–590. doi:10.1016/j.jhazmat.2006.07.035.

    Article  CAS  Google Scholar 

  • Khodja, A. A., Sehili, T., Pihichowski, J. F., & Boule, P. (2001). Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. Journal of Photochemistry and Photobiology A Chemistry, 141, 231–239. doi:10.1016/S1010-6030(01)00423-3.

    Article  CAS  Google Scholar 

  • Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations. A review. Applied Catalysis B Environmental, 49, 1–14. doi:10.1016/j.apcatb.2003.11.010.

    Article  CAS  Google Scholar 

  • Kositzi, M., Poulios, I., Samara, K., Tsatsaroni, E., & Darakas, E. (2007). Photocatalytic oxidation of Cibacron Yellow LS-R. Journal of Hazardous Materials, 146, 680–685. doi:10.1016/j.jhazmat.2007.04.071.

    Article  CAS  Google Scholar 

  • Kritikos, D. E., Xekoukoulotakis, N. P., Psillakis, E., & Mantzavinos, D. (2007). Photocatalytic degradation of reactive black 5 in aqueous solutions: Effect of operating conditions and coupling with ultrasound irradiation. Water Research, 41, 2236–2246.

    Article  CAS  Google Scholar 

  • Ku, Y., Lee, Y. C., & Wang, W. Y. (2006). Photocatalytic decomposition of 2-chlorophenol in aqueous solution by UV/TiO2 process with applied external bias voltage. Journal of Hazardous Materials, 138, 350–356.

    Article  CAS  Google Scholar 

  • Kusvuran, E., Samil, A., Atanur, O. M., & Erbatur, O. (2005). Photocatalytic degradation of di- and tri-substituted phenolic compounds in aqueous solution by TiO2/UV. Applied Catalysis B Environmental, 58, 211–216. doi:10.1016/j.apcatb.2004.11.023.

    Article  CAS  Google Scholar 

  • Lars, B. R., & Mallika, I. (1997). Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and us photocatalysis. Chemosphere, 35, 585–596. doi:10.1016/S0045-6535(97)00122-7.

    Article  Google Scholar 

  • Lee, J. W., Choi, S. P., Thiruvenkatachari, R., Shim, W. G., & Moon, H. (2006). Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes and Pigments, 69, 196–203. doi:10.1016/j.dyepig.2005.03.008.

    Article  CAS  Google Scholar 

  • Mariana, N., Siminiceanu, I., Yediler, A., & Kettrup, A. (2002). Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by UV/H2O2 oxidation. Dyes and Pigments, 53, 93–99. doi:10.1016/S0143-7208(02)00012-8.

    Article  Google Scholar 

  • Pekakis, P., Xekoukoulotakis, N. P., & Mantzavinos, D. (2006). Treatment of textile dyehouse wastewater by photocatalysis. Water Research, 40, 1276–1286. doi:10.1016/j.watres.2006.01.019.

    Article  CAS  Google Scholar 

  • Poulios, I., & Tsachpinis, I. (1999). Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 74, 349–357. doi:10.1002/(SICI)1097-4660(199904)74:4<349::AID-JCTB5>3.0.CO;2-7.

    Article  CAS  Google Scholar 

  • Sharma, S., Pathak, S., & Sharma, K. P. (2003). Toxicity of the azo dye methyl red to the organisms in microsystems, with special reference to the guppy (Poecillia reticulate Peters). Bulletin of Environmental Contamination and Toxicology, 70, 753–760. doi:10.1007/s00128-003-0047-8.

    Article  CAS  Google Scholar 

  • Shu, H. Y., Chang, M. C., & Fan, H. J. (2004). Decolorization of azo dye acid violet 1 by the UV/H2O2 process and optimization of operating parameters. Journal of Hazardous Materials, B113, 201–208. doi:10.1016/j.jhazmat.2004.06.007.

    Article  Google Scholar 

  • So, C. M., Cheng, M. Y., Yu, J. C., & Wong, P. K. (2002). Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation. Chemosphere, 46, 905–912. doi:10.1016/S0045-6535(01)00153-9.

    Article  CAS  Google Scholar 

  • Walker, G. M., Hansen, L., Hanna, J. A., & Allen, S. J. (2003). Kinetics of reactive dye adsorption onto dolomitic sorbents. Water Research, 37, 2081–2089. doi:10.1016/S0043-1354(02)00540-7.

    Article  CAS  Google Scholar 

  • Wenhua, L., Hong, L., Suo’an, C., Jianqing, Z., & Chunan, C. (2000). Kinetics of photocatalytic degradation of aniline in water over TiO2 supported on porous nickel. Journal of Photochemistry and Photobiology A Chemistry, 131, 125–132. doi:10.1016/S1010-6030(99)00232-4.

    Article  CAS  Google Scholar 

  • Zee, F. P. V. D., & Villaverde, S. (2005). Combined anaerobic-aerobic treatment of azo dyes—A short review of bioreactor studies. Water Research, 39, 1425–1440. doi:10.1016/j.watres.2005.03.007.

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by Grant from the National Science Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Yu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CY. Photocatalytic Degradation of Azo Dye Reactive Orange 16 by TiO2 . Water Air Soil Pollut 202, 335–342 (2009). https://doi.org/10.1007/s11270-009-9980-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-9980-4

Keywords

Navigation